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a b s t r a c t

Most constitutive models can only simulate cumulative deformation after a limited number of cycles.
However, railroad ballast usually experiences a large number of train passages that cause history-
dependent long-term deformation. Fractional calculus is an efficient tool for modelling this phenomenon
and therefore is incorporated into a constitutive model for predicting the cumulative deformation. The
proposed model is further validated by comparing the model predictions with a series of corresponding
experimental results. It is observed that the proposed model can realistically simulate the cumulative
deformation of ballast from the onset of loading up to a large number of load cycles.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ballast usually serves as an essential track construction layer to
bear the load transmitted by railroad ties, and also to facilitate
rapid drainage. During the whole operation period, a rail track usu-
ally experiences a large number of train passages that cause a
cumulative deformation of the underlying ballast. Accurate predic-
tion of the corresponding maintenance periods necessitates the
development of an advanced constitutive model that captures
ballast deformation and degradation. Although traditional
elastoplastic constitutive models have been investigated widely
and successfully applied in many fields, more effort is required to
realistically describe the stress-strain relationship of ballast sub-
jected to long term cyclic loads. Traditional plasticity approaches,
including elastoplastic models [1,2], generalised plasticity models
[3,4], and bounding surface plasticity models [5–9], are capable
of incorporating cyclic loading, but often consider very limited
cycles (N < 100). For predicting cumulative deformation under a
large number of cycles (NP 103), these models can be inaccurate

due to the inevitable accumulation of numerical errors associated
with finite element analysis. There is little possibility of using these
theoretical models in practical engineering where the loading
usually consists of at least tens of thousands of cycles.

To overcome the above limitations, various empirical and semi-
empirical models have been proposed. Although empirical models
are usually problem-targeted and easy to use in engineering
applications [10,11], they do not reflect the essential mechanisms
explaining aggregates degradation and related deformation.
Semi-empirical models usually provide an alternative way to
model cumulative deformation. For example, Suiker and de Borst
[12] proposed an elasto-plastic methodology for simulating the
cyclic deterioration of rail tracks by assuming that permanent
deformation was caused by frictional sliding and volumetric com-
paction. The growth of each component of deformation was empir-
ically simulated by a power law. François et al. [13] proposed an
explicit elastoplastic model by assuming an exponential decrease
of the accumulated strain. Indraratna et al. [14] proposed a
pressure-dependent elasto-plastic model by introducing empirical
parameters to consider the effect of particle breakage, stress ratio
and number of load cycles. However, some parameters in these
models require extensive and special laboratory tests and as such
are often unattractive in railway problems.
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Rather than selecting different modelling techniques to
describe experimentally observed stress-strain behaviour, a funda-
mental question that arises is: are we using the correct mathemat-
ical tools to describe material deformation? More precisely, in view
of the topic of this paper, one may ask: are commonly used incre-
ments in a particular model correctly assumed as an integer order
or should one choose more general operators of a fractional order?
The answer to such a question is not obvious. In fact, the cumula-
tive deformation of granular soils under cyclic loading is not only
influenced by the current loading stress but also by previous load-
ing cycles [15]. It is indeed a memory-intensive phenomenon that
can be represented mathematically by using the concept of frac-
tional calculus.

Koeller [16] developed fractional calculus for the theory of vis-
coelasticity to form a link between the ideal solid state, governed
by Hooke’s law, and the ideal liquid state, governed by Newton’s
law of viscosity. In the limit of an ideal solid the system has perfect
memory while in the ideal liquid state it has no memory. Hence
intermediate states, representing real materials, have imperfect
memory and require fractional calculus to be modelled appropri-
ately. Fractional calculus has been used successfully for problems
involving soil mechanics, solid mechanics, vibration and damping.

Geotechnical applications using fractional calculus include the
creep and relaxation behaviour of composite soil [17], the time
dependence of Poisson’s ratio [18], the strain hardening and soft-
ening behaviour of sand and clay under monotonic loading [19],
the vibration of rail pads [20], and the anomalous diffusion of
underground water [21,22].

However, for the problem of interest here, the cumulative
deformation of ballast subjected to a large number of load cycles,
further modelling and investigation is still required. This paper
aims to develop a more rigorous model for predicting the cumula-
tive deformation of ballast subjected to a large number of loading
cycles. Traditional elastoplasticity theory is used and modified by
incorporating the concept of fractional calculus, and then the
developed model is validated against the results of a series of lab-
oratory test results.

2. Fractional calculus

In traditional calculus the nth derivative or integral of a function
is defined for n taking integer values only. In fractional calculus the
definitions of a derivative and an integral are generalised and n can
be a non-integer. One method to generalise the definition of the
repeated integral, which results in the Riemann-Liouville fractional
integral of the function, z(x), is given by [23]:
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where I signifies an integral. a is the fractional order, ranging from 0
to 1, which can be correlated to the fractal dimension of a given
granular material, as indicated in Appendix A. x denotes the inde-
pendent variable. In this context, x can be regarded as the loading
time in a static load test or the number of loading cycles in a cyclic
load test. The conventional gamma function CðxÞ is defined as:

List of notations

A is the constant of proportionality
Ce is the elastic compliance matrix
D means derivation
E is the material constant
G is the shear modulus
H is the plastic modulus
I means integral
K is the bulk modulus
L is the particle diameter
M is the critical state friction parameter
N is the number of load cycle
Ns is the number of particles
Rd is the relative density
b is the fitting parameter
e0 is the initial void ratio
f is the load frequency
k is the degradation rate of minimum sized particles
ls is the particle size
m is the plastic flow tensor
n is the loading direction tensor
p0 is the mean effective principal stress
p00 is the initial mean effective principal stress
p0 is the mean effective principal stress on bounding sur-

face
p00 is the initial mean effective principal stress on bounding

surface
pr is the unit pressure
q is the deviator stress
q is the deviator stress on bounding surface
R is the ratio between energy dissipation by particle rear-

rangement and breakage energy
a is the fractional order
b is the fitting parameter

din is the distance from the stress origin to the image stress
point

d is the distance from the current stress point to the im-
age stress point

q is the scalar relating the image stress and the loading
stress

g is the stress ratio between deviator stress and mean
effective principal stress

v is the plastic multiplier
k is the gradient of the critical state line
j is the gradient of the swell line
m is the Poisson ratio
c is the plastic flow parameter
cs is the surface shape factor
Cð�Þ is the gamma function
Ds is the fractal dimension of the aggregates
_r is the incremental stress tensor
r0
1 is the major effective principal stress

r0
2 is the medium effective principal stress

r0
3 is the minor effective principal stress

_e is the incremental strain tensor
_ee is the incremental elastic strain tensor
_ep is the incremental plastic strain tensor
_ep1 is the major plastic principal strain
_ep3 is the minor plastic principal strain
eev is the elastic volumetric strain
ees is the generalised elastic shear strain
_epv is the plastic volumetric strain
_eps is the generalised plastic shear strain
/cr is the critical state friction angle
_Ss is the incremental surface area of aggregates
X is the surface energy
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