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a b s t r a c t

In the context of the recently developed breakage mechanics that is based on thermodynamics principles,
this paper presents a mathematical modelling procedure to implement the simple (i.e., linear elastoplas-
tic) breakage constitutive model using finite element analysis (FEA) with illustrations by engineering
applications. More informative mathematical derivation procedures of energy dissipations, plastic poten-
tial, yield function and non-associated flow rules are presented. In contrast, the existing relevant publi-
cations often lack sufficient elaboration, leaving knowledge gaps in the full understanding the model. This
is followed by a series of numerical simulations in ABAQUS to test the model at the constitutive level.
Various isotropic and triaxial shear tests in drained or undrained conditions are tested to illustrate the
key features of the breakage model, which seem to be overlooked in the literature. Finally, a few numer-
ical results are compared with experimental shear tests to demonstrate the ability of the simple breakage
model in reflecting mechanical responses of crushable granular aggregates.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Different stress return algorithms have been proposed to inte-
grate the constitutive relationships to compute the increments in
stresses and state variables. One of the relatively easy algorithms
is the so-called ‘explicit scheme’. This integration scheme enables
the updated quantities at time t +Dt to be calculated based on
known quantities at time t. Its notable advantage is the simplicity
in FE implementation and it has been widely used in geomechanics
[1]. However, the yield condition is not guaranteed at time t + Dt in
such a forward integration process. As a result, the calculated
quantities, for instance the plastic multiplier at time t + Dt, is not
satisfied in the yield condition. This causes the solution over many
increments to drift away from the yielding surface [2]. Moreover,
the time step size, Dt, cannot be too large. Otherwise, incorrect
results will be encountered. Therefore, the application of explicit
schemes is usually limited to some simple constitutive models
(e.g., linear elastic model). For complex non-linear constitutive
models, the explicit scheme is usually neither efficient nor applica-
ble despite that some researchers have been attempting to
improve the performance of the explicit scheme. A good example

is the explicit method with automatic substepping and error con-
trol as proposed by [3] for a suction-dependent unsaturated soil
model, and more recently by [4] for integrating the well-known
Barcelona Basic Model.

In contrast to the explicit scheme, another integration algo-
rithm is called ‘fully implicit scheme’. In detail, an (elastic) trial
stress increment is firstly computed to obtain the updated trial
stress rtr

tþDt . The trial stress will be outside the yield surface if the
yield condition is not satisfied. On this occasion, the trial stress is
then brought back onto the yield surface at time t + Dt with a plas-
tic correction. This is known as stress return process that must be
solved iteratively, of which a widely used method is the Newton
method. Fully implicit method ensures the yield condition that is
satisfied at each time increment, thus avoiding the deviation from
the yield surface, as commonly encountered in the explicit scheme.
In addition, the fully implicit scheme allows for the use of signifi-
cantly larger time increments, which can give rise to faster solu-
tions [2]. Note that the fully implicit method has been widely
used in geomechanics [5–7] and general complex elastoplastic
and viscoplastic materials, and models of which the mechanical
responses are determined by all principal stress invariants.

The constitutive equations can also be integrated using a back-
ward Euler return algorithm [6,8–14]. This might be considered to
be a ‘semi-implicit’ method with first-order accuracy, as it still
follows the idea of stress return but relies on the first-order of
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Taylor’s expansion of the yield function. It is much simpler than the
fully implicit method regarding the stress return process because
the iteration is not strictly needed to calculate the updated stres-
ses. Therefore the semi-implicit method makes the FE implementa-
tion much easier compared with the fully implicit method.
Moreover, the semi-implicit method enables quantities to be
updated almost as accurately as those obtained from the fully
implicit method. Due to its simplicity, stability and high level of
accuracy, the semi-implicit integration method is used in this
paper to implement the simple breakage model.

The objective of this paper is to numerically verify the
implementation of the simple breakage model. To achieve this,
fundamental features of the breakage model and its thermody-
namically consistent constitutive equations are briefly reviewed
in Section 2. Especially, the relevant issues in model derivations
of the energy dissipations, plastic potential, yield function and
non-associated flow rules are elaborated to avoid incompleteness
of understanding, as often encountered in the existing literatures.
Section 3 illustrates the FE implementation by a standard return
mapping method. This shows the model’s versatility in various
numerical applications. Section 4 tests the efficiency of the FE
implementation at the material point level under various conven-
tional loading conditions. This helps to understand the fundamen-
tal features of the model, which seem to be overlooked in the
literature. Then in Section 5, laboratory testing of some weak to
hard granular materials are numerically modelled to demonstrate
some simple application, where the experimental data are in good
agreement with the numerical counterparts. Summaries and dis-
cussions are presented in the last section.

2. Discussion of the breakage mechanics and simple breakage
model

The significance of thermodynamics in the formulation and
development of constitutive models has been widely acknowl-
edged [15–18]. A rigorous constitutive model must satisfy both
the first and second laws of thermodynamics in order to be consis-

tent and physically meaningful. Otherwise, a model that does not
obey the thermodynamics framework may not be used confidently
in describing a material behaviour [16]. The importance of obeying
thermodynamics framework in developing constitutive models has
been recently stressed by Al-Rub and Darabi [19] and Darabi et al.
[20], who established a general thermodynamically consistent
framework for coupling various mechanisms such as temperature,
viscoelasticity, viscoplasticity, viscodamage, and micro-damage
healing for constitutive modelling of time- and rate-dependent
materials.

On the other hand, the formulation of continuum breakage
mechanics and simple breakage model [21,22] were developed
on the basis of thermodynamics principles. Following the thermo-
dynamics principles, the breakage mechanics emphasises the sig-
nificance of linking micro to macro scales (i.e., avoiding as much
as possible the arbitrary mathematical structures) in constitutive
modelling by incorporating grain size distribution (GSD) and its
evolution (through breakage, B) to capture the macroscopic soil
behaviour. In this way, the underlying microscopic process con-
nects with macroscopic behaviour, which many other continuum
theories fail to capture.

There are various thermodynamically consistent breakage mod-
els that have been derived from the breakage mechanics, providing
physical explanations for many of the phenomenological aspects of
crushable soil behaviour. Thus, these models have far been used in
different engineering applications, including geophysics [23,24],
rock mechanics [25], foundation engineering [26], unsaturated soil
mechanics [27], and a general breakage model accounting for finite
deformation and porous compaction and dilation [28]. Among
those breakage models, the focus of the present study is the simple
breakage model that is the simplest and fundamental form among
all other relatively more complicated breakage models. According
to the simple breakage model, the macroscopic specific elastic
strain energy stored in a granular aggregate including particles of
various sizes is simplified using linear elasticity [29]:

W ¼ ð1� #BÞ 1
2
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Nomenclature

B breakage index
Dijkl elastic matrix
Dm minimum grain size
DM maximum grain size
eij deviatoric strain tensor
EB breakage energy
EB dissipative breakage energy
Ec breakage energy constant
Fðx;BÞ current cumulative GSD by mass
F0ðxÞ initial cumulative GSD by mass
FuðxÞ ultimate cumulative GSD by mass
G shear modulus
K bulk modulus
M ratio of failure shear stress to the volumetric one
p mean stress
p dissipative mean stress
p0 initial mean stress
pc critical isotropic confining pressure
pf mean stress at failure
q triaxial shear stress
q dissipative triaxial shear stress
qf triaxial shear stress at failure
sij deviatoric stress tensor
Tijmn tangent stiffness matrix

x grain size
y yield function in mixed stress/breakage space
ytrial yield function at elastic trial point
y⁄ yield function in generalized dissipative triaxial stress/

breakage space
a fractal dimension
eev , ees elastic volumetric and shear strains in triaxial condi-

tions
eij, eeij strain and elastic strain tensors
ev , es volumetric and triaxial shear strains
d increment
dij Kronecker delta
dB incremental breakage
depv , de

p
s incremental plastic volumetric and shear strains

dk non-negative plastic multiplier
# grading index
rij stress tensor
x plastic-breakage coupling angle
W macroscopic specific elastic strain energy
dU increment of dissipation potential
dUB increment of breakage dissipation
dUv

p increment of plastic volumetric dissipation
dUs

p increment of plastic shear dissipation
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