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An edge-based smoothed point interpolation method is adopted for coupled hydro-mechanical analysis
of saturated porous media with elasto-plastic behaviour. A novel approach for the evaluation of the cou-
pling matrix of the porous media is adopted. Stress integration is performed using the substepping
method, and the modified Newton-Raphson approach is utilised to address the nonlinearities arising

from the elasto-plastic constitutive model used in the formulation. Numerical examples are studied
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and the results are compared with analytical solutions and those obtained from the conventional finite
element method (FEM) to evaluate the performance of the proposed model.
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1. Introduction

Problems involving the nonlinear behaviour of saturated porous
media are of considerable interest in geotechnical engineering. The
bearing capacity of shallow foundations, slope stability problems,
and many other boundary value problems lie in this category. To
date, a large number of experimental, theoretical, and numerical
works have been performed in this area. In terms of numerical
analyses, the widely used finite element method (FEM) has been
the major tool for the study of the behaviour of elasto-plastic
materials [1-7]. However, the FEM suffers from inherent short-
comings, such as an overly stiff behaviour, strong reliance on the
quality of the mesh, and problems related to mesh distortion in
large deformation analysis.

Meshfree methods (MMs) have been proposed to overcome
deficiencies associated with the FEM. The first MM, often referred
to as smoothed particle hydrodynamics (SPH) [8,9], was intro-
duced in the 1970s to solve problems in astrophysics. SPH was fol-
lowed by a number of improved MMs in the 1990s, including the
diffuse element method (DEM) [10], element-free Galerkin meth-
ods (EFGM) [11] and reproducing kernel particle methods (RKPM)
[12]. Many of these MMs have already been utilised for solving
coupled hydro-mechanical problems [13,14]. In the 2000s, the
point interpolation methods (Polynomial PIM and radial PIM) were
formulated by Liu and Gu [15,16]. Despite their simplicity and
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many advantages over other MMs [17-21], PIMs are not theoreti-
cally rigorous because of the problems related to discontinuity of
the approximation function in the problem domain. To overcome
this difficulty, a novel category of MMs based on PIMs were pro-
posed [22-25]. In this approach, the generalised gradient smooth-
ing technique is applied to the polynomial PIM and the radial PIM,
resulting in a new class of MMs known as the Smoothed PIM
(SPIM) and Smoothed RPIM (SRPIM). In these methods, the prob-
lem associated with the incompatibility of the approximation func-
tion is circumvented by adopting a constructed, rather than a
compatible, strain field and therefore removing the need for calcu-
lation of the derivation of the shape functions. These methods are
in essence a combination of MMs and the FEM, therein benefiting
from the specific strengths of each method. In SPIMs, a background
mesh remains required; however, unlike the FEM, the numerical
solution is not heavily dependent on the quality of the background
mesh, and a simple triangular mesh (in 2D problems) or tetrahe-
dron mesh (in 3D problems) is often sufficient to ensure accuracy
of the numerical solutions.

SPIMs are very efficient and have been applied in various fields
of engineering such as solid mechanics [22,26,27], heat transfer
[28], and, recently, soil mechanics [29,30] assuming linearly elastic
material behaviour. However, applications of SPIMs to fully cou-
pled hydro-mechanical problems in elasto-plastic porous media
have so far been limited. Zhang et al. [33] applied SPIM to elasto-
plastic analysis of two-dimensional problems with gradient-
dependent plasticity, albeit for single-phase materials only. Soares
[31,32] applied SPIM to the modelling of dynamic elasto-plastic
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problems in single-phase and two-phase materials; however, he
adopted an approximation technique for the calculation of the cou-
pling matrix of the discretised system of equations in the sense
that he used Gauss points located on the boundary of the smooth-
ing domains, rather than conventional Gauss points, for the calcu-
lation of the area integrations over the smoothing domains. This
approach may introduce errors in the calculations, which can be
controlled only by refining the background mesh, because adopting
more Gauss points for the area integrations is not practical in the
approach proposed by Soares [31,32]. To date, SPIM has not been
rigorously applied to analysis of coupled flow and deformation in
porous media subjected to elasto-plastic behaviour.

In this paper, an edge-based SPIM (ESPIM) is presented for cou-
pled flow-deformation analyses of porous media assuming an
elasto-plastic behaviour for the solid skeleton. The problem
domain is divided into three-node triangular background cells
through a Delaunay triangulation. Edge-based smoothing domains
are then constructed using the cells of the triangular background
mesh. The displacement field is constructed by employing the
polynomial and radial PIMs, which possess the Kronecker delta
property facilitating the imposition of the essential boundary con-
ditions. The smoothed strain field is constructed by applying the
smoothing operation technique over the smoothing domains. To
ensure non-singularity of the moment matrix in the derivation of
the nodal shape functions, two node selection schemes, referred
to as Tr3 and Tr2L, are used to select the support nodes for shape
function construction at each point of interest. The conventional
Gauss points inside the smoothing domains are also used for the
calculation of the compressibility and coupling matrices [29]. A
substepping scheme [34] assuming known strain increments is uti-
lised for stress integration, and the nonlinear system of equations
is solved by adopting the modified Newton-Raphson iteration
scheme. Numerical examples are presented to demonstrate the
accuracy and application of the proposed formulation.

2. Governing equations

The general equations governing flow and deformation in a sat-
urated deforming porous medium under the assumptions of small
strains and negligible inertial forces are expressed as follows [35]
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with x; and x, being space coordinates. V is the gradient operator
matrix defined as V =L}, with §=[1 1 0], and div stands for
the divergence operator. Eq. (1) states the equilibrium of the soil
water mixture, and Eq. (2) is the combination of the mass balance
equation for the fluid phase with Darcy’s law for the fluid flow in
porous media. In these equations, bold imprints denote vectors
and matrices, and the over-dot indicates time derivative. ¢ is the
total stress vector; g=[0 g 0]"and g=[0 g]|" are the gravity
acceleration vectors, with g being the gravitational constant; u is
the displacement vector of the soil skeleton; pr is the fluid pressure
(the tilde indicates a continuous field as opposed to the discretised
approximation field introduced later); k; indicates the intrinsic per-
meability; u; is the dynamic viscosity of the fluid phase; p; is the
density of the fluid; and p is the porous medium density.

ar = n(cr — Cs) + 1cs, where n =1—%, n is the porosity, and ¢, ¢,
and c are the compressibility of the fluid phase, compressibility of
the solid grains, and drained compressibility of the solid skeleton,
respectively.

The other relationships used to complete Egs. (1) and (2) are
Terzaghi’s effective stress principle, the incremental elasto-plastic
constitutive law, and the relationship for small strains for the solid

matrix, as shown in Eqgs. (4), (5) and (6), respectively,
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Note that ¢’ is the effective stress vector, and D is the tangent
elasto-plastic constitutive matrix. For the soil skeleton, compres-
sion is taken as negative, and tension is taken as positive.

3. Edge-based smoothed point interpolation method
3.1. Function approximation

Point interpolation methods (PIM and RPIM) [15,16] are consid-
ered for the function approximation in this work. The first group of
shape functions applied in the ESPIM are the polynomial point
interpolation shape functions in which polynomials are used as
the basis functions. The displacement field is approximated at
the point of interest X = [x; X»] as

P
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where u(x) is the approximated displacement vector, P;(X) are the
polynomial basis functions obtained from the Pascal’s triangle of
monomials for 2D problems, and a is a coefficient vector with yet
unknown entries as follows:
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where p is the number of supporting nodes for the point of interest.

The radial point interpolation shape functions based on radial
basis functions (RBFs) are used in the ESRPIM. The approximated
field function based on RPIM interpolation enriched with polyno-
mials can be written as

u(x) = Zp:Ri(x)ai + ZI:P,(x)bj =R"(x)a+P'(x)b (10)
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where R;(X) and P;(x) are radial and polynomial basis functions,
respectively; p is the number of supporting nodes for the point of
interest; and [ is the number of monomials used in the polynomial
basis functions. It should be noted that a minimum of three mono-
mials are required to ensure linear consistency (i.e., [ > 3). Adding
polynomials to the RPIM shape functions generally improves the
accuracy of the results and interpolation stability of the nodal shape
functions [36].

Among various RBFs available in the literature [37,38], the
multi-quadrics (MQ) RBFs are chosen in the current study due to
their simplicity and stability. Thus, R;(X) is expressed as

q
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in which r; is the distance between the point of interest x and the
node at x;, d. is the local average nodal spacing, and ¢, and g are
the shape parameters, taken as 4.0 and 1.03 respectively, following
the recommendations in [23,39].
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