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On the use of nonlocal regularisation in slope stability problems
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a b s t r a c t

This study examines the use of nonlocal regularisation in a coupled consolidation problem of an exca-
vated slope in a strain softening material. The nonlocal model reduces significantly the mesh dependency
of cut slope analyses for a range of mesh layouts and element sizes in comparison to the conventional
local approach. The nonlocal analyses are not entirely mesh independent, but the predicted response is
much more consistent compared to the one predicted by local analyses. Additional Factor of Safety anal-
yses show that for drained conditions the nonlocal regularisation eliminates the mesh dependence
shown by the conventional local model.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The modelling of slope failure in a strain softening material
with conventional Finite Element models can be particular chal-
lenging. In a typical finite element analysis the strain developed
along the shear bands is calculated using the displacement infor-
mation computed at the nodes of the elements. This affects both
the shear band thickness and the direction of its development
[1]. The calculated strain is used to assess the degree of softening
experienced by the material at that point. There can be a large dif-
ference, i.e. a high gradient, between displacement and therefore
strain at neighbouring points. The potential strain concentration
at one single point can lead to convergence problems and ambigu-
ities in the development of the slip surface. In addition, the sizes of
the elements in the mesh restrict the minimum size of the shear
band to the distance between two points of known displacement,
i.e. two nodes [2]. For example, if 8-noded two-dimensional ele-
ments are employed, the minimum shear band thickness is
restricted to the width of half an element. These inherent limita-
tions of the finite element method render the solution to be mesh
dependent.

Several approaches have been proposed in the literature to try
and regularize the numerical solution and model rigorously the
shear zone and these can be divided into three main categories;
Cosserat theories [3], gradient theories [3–6] and nonlocal

approaches [1,3,7,8]. The present study focuses on the latter
approach which is particularly attractive because it does not alter
the fundamental governing equations, but it does introduce the
calculation of a nonlocal strain as a variable by spatially averaging
the local strains [9]. This makes the approach of nonlocal strain
regularisation more straightforward to implement in an existing
finite element code, compared to Cosserrat and gradient theories.

The non-local method [10,11] adopts a distribution function
which spreads the strain of the material at a point over a pre-
defined surrounding volume. The local method calculates the
extent of strain softening with reference to the strain at that point
alone. To define the contribution of nonlocal strains to the yielding
of the material requires the additional input of a characteristic
length parameter, which controls the contribution of local strains
to the nonlocal calculation depending on the distance of the local
strains from the calculation point. In the present study the nonlocal
model of Galavi and Schweiger [1] (G&S) is employed in a coupled
consolidation problem of an excavated slope in a strain softening
material aiming to investigate the performance of this nonlocal
approach in terms of mesh dependence and computational cost.
Furthermore the impact of the two nonlocal parameters, the
defined length (DL) and the radius of influence (RI) on the numer-
ical predictions is thoroughly investigated providing guidance for
their use in boundary value problems. The defined length is an
integral parameter of the G&S method which modifies the rate of
softening, while the radius of influence is an optional parameter
which makes the computation more efficient by reducing the num-
ber of local strains referenced in the nonlocal strain calculation.
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2. Mesh dependency of local strain softening slope stability
analyses

As previously discussed, themodelling of slope failure in a strain
softening material with conventional Finite Element models can be
particular challenging, as the solution can be very sensitive to the
adopted mesh discretization. For an assumed problem geometry,
different element layouts can be employed and the mesh is usually
refined around the areas of potential strain concentration leading to
varying element sizes within the FE model. The sensitivity of a local
strain softening model on these two aspects (i.e. the element size
and the elements’ layout) is first demonstrated, before exploring
the use of nonlocal regularisation in strain softening materials. A
parametric study employing both biaxial compression analyses,

as well as slope stability analyses was carried out for this purpose.
The biaxial compression analyses first examine the role of element
size within a uniformmesh discretisation, while in the slope stabil-
ity analyses both aspects of mesh discretisation are investigated. All
the analyses presented in this paper were carried out in plane strain
with the Finite Element code ICFEP (Imperial College Finite Element
Program) [12], using a strain softening variant of the Mohr-
Coulomb model [13]. This is an elasto-plastic model in which soft-
ening behaviour is facilitated through a variation of the angle of
shearing resistance u0, and the cohesion intercept c0 with the devi-
atoric plastic strain invariant, as shown in Fig. 1. The limits for peak
(up

0, c0p) and residual (ur
0, c0r) strength are specified in themodel by a

percentage value of the deviatoric plastic strain invariant (Ep
d;p, E

p
d;r ,

respectively) which is defined in Eq. (1):

Fig. 1. Variation of the angle of shearing resistance u0 and the cohesion intercept c0 with the deviatoric plastic invariant Ep
d adapted from Potts et al. [13].

Fig. 2. Boundary conditions for biaxial compression.

Table 1
Summary of biaxial compression analysis for local and nonlocal strain softening models.

Mesh identification & element arrangement Element size (m) Local model:strain rate peak to residual (%) Nonlocal model:DL values

0.525 m 1.05 m 2.1 m

Ratio of DL over element size

10 � 10 2.1 5–20 – – 1:1
20 � 20 1.05 10–40 – 1:1 1:2
40 � 40 0.525 20–80 1:1 1:2 1:4

188 F.C. Summersgill et al. / Computers and Geotechnics 82 (2017) 187–200



Download English Version:

https://daneshyari.com/en/article/4918012

Download Persian Version:

https://daneshyari.com/article/4918012

Daneshyari.com

https://daneshyari.com/en/article/4918012
https://daneshyari.com/article/4918012
https://daneshyari.com

