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a b s t r a c t

The polygon scaled boundary finite element method is semi-analytical and known for its high precision.
However, the material nonlinearity cannot be maintained because this method uses an analytical solu-
tion in the radial direction. In this paper, a novel nonlinear algorithm is developed by introducing internal
Gaussian points over a subdomain. The response of nonlinearity for a concrete-faced rockfill dam is mod-
eled. The results correspond well with the results from finite element modelling, which demonstrates the
method can be used to describe the nonlinear characteristics of geomaterials. Furthermore, this method
offers promising flexibility for analyzing complex geometries without decreasing the precision.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Material nonlinearity is an inevitable problem in the numerical
simulations of many engineering structures. Many researchers are
interested in studying and implementing nonlinear calculation
methods and software. The finite element method (FEM) has been
used extensively as an effective technique for obtaining reasonable
solutions. In traditional FEM, the domain is often discretized into
triangles or quadrilaterals. Polygon finite elements and related
methods have been proposed in recent years. Some representative
numerical methods are based on polygon elements, such as the
rational function interpolation by Wachspress [1–3], the Voronoi
cell finite element method (VCFEM) and polygon elements using
natural neighbor shape functions [4,5], the planar arbitrary polyg-
onal element method [6,7], the macro-element Galerkin method
(MEGM) [8], the conforming polygonal finite element (CPFE)
method [9] and the natural element method (NEM) [10]. Using
polygon elements, the discretization becomes more flexible, offer-
ing high accuracy and a high degree of convergence, and the
mechanical properties can be simulated conveniently and effec-
tively. The aforementioned methods based on polygon finite ele-
ments [11–13] are promising in the numerical simulation field.

The scaled boundary finite element method (SBFEM), presented
by Wolf and Song [14–17], combines the advantages of the bound-
ary element method (BEM) and FEM. SBFEM is a semi-analytical
method, in which a numerical solution is obtained in the circum-
ferential direction and an analytical value can be derived in the
radial direction. Compared with conventional FEM, SBFEM
increases the degree of precision and convergence in the numerical
simulations and significantly reduces the number of degrees of
freedom in the computational model. In addition, no fundamental
solutions are require for the application of the variational principle.
These advantages/benefits make SBFEM a powerful tool for a wide
variety of linear elasticity problems.

During the past two decades, SBFEM has been used to many
problems in engineering fields, such as those related to unbounded
media [18], electrostatic fields [19], electromagnetic waveguides
[20], magneto-electro-elastic plates [21] and fluid-structure inter-
actions [22]. In unboundedmedia, the radiation conditions at infin-
ity can be satisfied exactly and automatically. The number of
elements is dramatically reduced in the fluid-structure interaction
field because discretization is only performed at the boundary. In
electromagnetic problems, the singularity of the contact between
different materials can be efficiently solved.

The polygonal scaled boundary finite element method
(PSBFEM) was recently developed based on SBFEM. The concept
of polygons was introduced to handle more complex geometries,
making SBFEM more flexible and convenient. Compared with
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FEMs, PSBFEM contributes to getting a higher degree of precision
and convergence [23]. Many researchers have implemented
PSBFEM through numerical simulation. Ooi [24–27] applied this
theory to solve the fracture analysis of structures; Bao [28] simu-
lated the crack propagation of a gravity dam under seismic load-
ing; and Mingguang [29] modeled the crack propagation for
contacts between different materials.

However, SBFEM are mostly subject to linear elastic materials
and rarely used in non-linearity materials in practice, especially
in engineering fields. Combining SBFEM with the homotopy analy-
sis method (HAM), Lin and Liao [30] applied SBFEM to solve non-
linear problems. The least squares method was introduced to
adjust to the integration polynomial to simulate plasticity over
each polygon, and the PSBFEM formulation for elasto-plastic anal-
ysis was derived by Ooi et al. [31]. This study presents a different
approach for applying SBFEM to non-linear materials.

According to the integral rule of triangles in FEM, three internal
Gaussian integration points are introduced over a sector covered
by a line element on the boundary, and a novel nonlinear polygon
scaled boundary finite element method (NPSBFEM) is developed to
simulate the nonlinear properties of geomaterials. The elasto-
plastic constitutive matrix, stiffness matrix and imbalance force
vector can be conveniently derived by combining the development
platform of the finite element procedure. Then, SBFEM can be used
to model nonlinear material properties with polygon elements.

The remainder of this paper is organized as follows. The basic
theoretical derivation of the PSBFEM is introduced in Section 2.
The displacement field, the shape function of the polygon elements
and the incremental strain and stress fields are also described in
Section 2. Section 3 describes the scaled boundary polygon formu-
lation for elasto-plastic analysis. The development platform of the
proposed algorithm is introduced in Section 4. The reliability of the
procedure is validated by two numerical examples in Section 5.
Section 6 summarizes the major conclusions that can be drawn
from this study.

2. Theoretical derivation of the PSBFEM

2.1. Coordinate transformation

An arbitrary domain X can be discretized with a mesh of arbi-
trary n-sided polygons (where n can be any integer P3). Any poly-
gon can be treated as an SBFEM subdomain as long as its geometry
satisfies the SBFEM scaling requirement, i.e., any point on the poly-
gon boundary must be directly visible from the scaling center. The
numerical results of the domain are obtained after solving each
subdomain with the SBFEM.

Fig. 1 shows a typical polygon modeled using the PSBFEM. A
scaling center is defined at the geometric center of the polygon.
Each edge on the polygon is discretized using one-dimensional line
elements with a local coordinate s that varies from �1 to +1, and a
radial coordinate n is defined that varies from zero at the scaling
center to unity on the boundary. Two-node linear elements are
used in this study; the Cartesian coordinates of an element can
be expressed in terms of the scaled boundary coordinates as
follows:

xbðsÞ ¼ NðsÞxb ð2-1Þ

ybðsÞ ¼ NðsÞyb ð2-2Þ

NðsÞ ¼ ½N1ðsÞ;N2ðsÞ;N3ðsÞ; . . .NmðsÞ� ð2-3Þ
where xb and yb represent the vector of nodal coordinates on the
boundary, xb(s) and yb(s) are the coordinate vectors along the line
element, and N(s) is the shape function vector of a line element with
m nodes on the polygon boundary. Only the boundary is discretized
with line elements in each subdomain of SBFEM, so increasing the
order of the shape function does not increase the mesh complexity.
Increasing the order of the shape functions is convenient if neces-
sary, and standard one-dimensional Gauss-Lobatto-Lagrange shape
functions can be used. The entire polygon domain can be captured
by scaling the polygon boundaries according to the radial coordi-
nate with respect to the scaling center O. The scaled boundary coor-
dinate system (n, s) is related to the Cartesian coordinate system by
the scaling equation as follows:

xðn; sÞ ¼ nNðsÞxb ð2-4Þ

yðn; sÞ ¼ nNðsÞyb ð2-5Þ
where (x, y) is the geometry of a point inside the domain.

2.2. Scaled boundary polygon shape functions

For a sector covered by a line element on a polygon boundary,
an approximate solution for the displacement at any point in a sub-
domain can be written in a form related to the local coordinates of
the SBFEM:

uðn; sÞ ¼ NuðsÞuðnÞ ð2-6Þ
where the nodal displacement functions u(n) are introduced, which
denote the displacements along the radial lines are analyzed with
respect to the radial coordinate, and Nu(s) represents the shape
function matrix, which has the following form:

NuðsÞ ¼
N1ðsÞ 0 N2ðsÞ 0 � � � 0 NmðsÞ 0
0 N1ðsÞ 0 N2ðsÞ 0 � � � 0 NmðsÞ

� �
ð2-7Þ

Then, the partial differential equations of equilibrium for a poly-
gon derived from the Galerkin weighted residual method result in
the following equation, and the radial displacement functions u(n)
are the solution to the SBFEM governing equation for
displacement.

E0n
2uðnÞ;nn þ ðE0 � E1 þ ET

1ÞnuðnÞ;n � E2uðnÞ þ FðnÞ ¼ 0 ð2-8Þ
where the coefficient matrices Ei(i = 0,1,2) depend only on the
geometry and material properties of the subdomain, which are
evaluated for line elements and assembled over the discretized
polygon boundary, and F(n) is a load vector that includes contribu-
tions from side-face traction, body and thermal loads. Introducing a
new vector X(n) when the load vector F(n) becomes zero transforms
Eqs. (2-8) into a first-order homogeneous differential equation sys-
tem with respect to n:
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Fig. 1. Polygon representation of the SBFEM.
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