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h i g h l i g h t s

� Develop a new homogenisation approach using SBFE polygons for meso-models of concrete.
� Demonstrate much improved accuracy and considerable reduction in DOFs over the FEM.
� Propose a Weibull-like size effect law of effective elastic moduli considering porosity.
� The critical RVE size is 4.5 times the maximum aggregate size.
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a b s t r a c t

This study develops an efficient numerical homogenisation approach for meso-scale concrete samples
with randomly generated and packed aggregates and pores. A simple algorithm is devised to discretize
samples into meshes consisting of semi-analytical scaled boundary finite element (SBFE) polygons only.
As each aggregate is modelled by one SBFE polygon and only polygonal boundaries are discretized into
nodes, the degrees of freedom of a model is significantly reduced compared with conventional finite ele-
ment models. The volumetrically averaged stress inside a SBFE polygon is semi-analytically integrated,
leading to high accuracy in the homogenised elastic properties. The effects of model size and porosity
are statistically studied by extensive Monte Carlo simulations. A size effect law taking porosity into
account is proposed to predict effective elastic moduli in good agreement with experimental data up
to 200 mm model size. The meso-models are found statistically homogeneous when the size is about
4.5 times the maximum aggregate size.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete is a composite material widely used in engineering
structures. It is generally assumed homogenous for simplicity at
the structural or macro scale. At the meso-scale, the material is
highly heterogeneous, with aggregates and pores of various sizes
and geometries randomly distributed in the homogeneous mortar
[1–3]. The micro/meso-scale heterogeneous structures of concrete
can be used to determine the macroscopic, effective properties
such as elastic moduli and Poisson’s ratio, i.e., homogenisation
[2]. The homogenised effective properties may be used as engi-

neering constants for structural design in the future, hopefully
without the need of time-consuming experiments.

A number of homogenisation methods for heterogeneous mate-
rials, either analytical or numerical, are available in the literature.
Analytical methods estimating bounds of effective properties were
developed by Voigt [4], Reuss [5], Hill [6] and Hashin and Shtrik-
man [7]. Eshelby [8] gave solutions for the problem of a single
ellipsoidal inclusion embedded in an infinite matrix. These solu-
tions have been extended to many problems with assumptions of
weak or no inter-phasic interactions [9]. Other popular analytical
methods include the self-consistent method [10], the Mori-
Tanaka method [11,12] and the Christensen model [13]. Most of
the above analytical methods assume simple geometries for inclu-
sions and often neglect or simplify the meso-scale inter-phasic
interactions, and their applicability to concrete-like materials with
complex meso-structures and interactions is thus limited. Numer-
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ical homogenisation methods, mostly based on the finite element
method (FEM), are widely used instead [2,14–24]. These methods
aim to obtain an effective constitutive relation by calculating volu-
metrically averaged field variables under a series of boundary con-
ditions. The volume averaging takes place over a statistically
representative sample, referred as a representative volume ele-
ment (RVE). To obtain statistical data such as mean and standard
deviation of effective properties, a large number of samples with
randomly distributed inclusions and pores should be simulated
for a model size, often by repetitive Monte Carlo simulations
(MCSs) [25,26]. Another important but hardly-investigated prob-
lem in homogenisation is that, a heterogeneous model can be
assumed statistically homogeneous only when its size is larger
than a critical value, namely, the critical RVE size [27,28]. To deter-
mine this critical RVE size, again a large number of repetitive sim-
ulations for a range of sizes are needed. Therefore, high
computational costs are expected, apart from sophisticated mesh
generation for the complicated meso-structures of concrete and
very fine meshes necessary to calculate accurate average stress,
when the FEM is used. This can be further exacerbated if the
randomly-distributed pores are modelled. Although it is known
that the 2–6% porosity in concrete plays an important role in its
mechanical properties [29], a quantitative, statistical understand-
ing of the porosity effects is still not available.

To overcome the aforementioned difficulties in homogenisation
of concrete using the analytical methods and the FEM, we herein
propose a numerical homogenisation approach based on the scaled
boundary finite element method (SBFEM). The SBFEM, developed
by Wolf and Song [30], is a semi-analytical method combining
the advantages of the FEM and the boundary element method
(BEM) and also possessing its own merits. It discretizes the SBFE
subdomain or polygon boundaries only and thus reduces the mod-
elled spatial dimensions by one as the BEM, but it needs neither
fundamental solutions nor singular integrations. Therefore, the
simplicity in representing geometries as in the BEM and the wide
applicability as in the FEM are both retained. In addition, the
SBFEM is semi-analytical and thus has much higher accuracy than
other methods for the same number of degrees of freedom (DOFs).
It has proved very accurate and efficient for solving problems with
singularities and unbounded domains [31–42]. For example, it has
been applied to model linear and nonlinear crack propagation
[31,32], dynamic fracture [33], elastoplastic fracture [34], fluid
field problems [35,36], and soil-foundation problems under earth-
quake [37,38]. The advantages of polygonal SBFEM are further
demonstrated in recent reports by integration of quadtree/octree

meshing techniques [39,40], isogeometric analysis [41] and the
extended finite element method [42]. However, the polygonal
SBFEM has been extended for homogenisation of porous magneto-
electroelastic materials only very recently [43].

In this paper, we develop an efficient SBFE polygon-based
approach for numerical homogenisation of meso-scale models
of concrete with randomly-generated and packed aggregates. In
this approach, each polygonal aggregate is naturally modelled
by only one SBFE polygon without nodal discretization inside.
This not only reduces DOFs, but makes automatic meshing of
the meso-models simpler. The mortar matrix is discretized by
SBFE polygons too, using the Delaunay triangulation method.
The volumetrically averaged stress is derived from the SBFEM
governing equations. Extensive Monte Carlo simulations are car-
ried out with statistical analysis of the homogenised effective
properties, from which the effects of model size and porosity
are elucidated.

2. Methodology

2.1. The scaled boundary finite element method

The basic concept of the SBFEM is illustrated in Fig. 1 by an
example. A domain of an arbitrary shape is shown in Fig. 1a and
is divided into three subdomains or polygons. Any subdivision,
with various numbers, shapes and sizes of subdomains, can be
used as long as a scaling centre for each subdomain can be found
from which the whole subdomain boundary is visible. In the
SBFEM, each subdomain (Fig. 1b) is represented by scaling a defin-
ing boundary curve S relative to a scaling centre (x0, y0). The
boundary curve is discretized using one-dimensional finite ele-
ments with local coordinate g that varies from –1 to +1. Although
this study adopts two-noded linear elements shown in Fig. 1c,
higher-order elements can be used to improve the solution’s accu-
racy as in the FEM. The radial direction from the scaling centre to
the boundary is described by a radial coordinate n with n = 0 at
the scaling centre and n = 1 on S. The geometry of the subdomain
is described by scaling the boundary curve S along n. It can be seen
that g and n form a normalized local coordinate system similar to
the polar coordinate system. The fundamentals of the SBFEM are
given in many publications, e.g., [44–46], and only the key equa-
tions are given below for the convenience of discussion.

The governing equilibrium equations of the SBFEM have been
derived within the context of virtual work principle for elastostat-
ics by Deeks and Wolf [45]
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Fig. 1. Concept of the scaled boundary finite element method.
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