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h i g h l i g h t s

� A new FE modeling method of helically stranded cables is proposed.
� Multiple beam finite elements are adopted for the new FE modeling.
� The beam FE model is very effective in terms of accuracy and computational efficiency.
� Using the beam FE model, a practical procedure for torque balance design is presented.
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a b s t r a c t

In this paper, a method for the effective modeling of helically stranded cables for which multiple beam
finite elements (FE) are used is presented, and a design procedure for the torque balance of the cables
using the beam FE model is proposed. Regarding the beam modeling, the wire-to-wire contacts and
the elastoplastic material behavior are considered. The proposed beam model is advantageous because
the accuracy of the corresponding numerical results is as good as that of the full solid FE model, while
the computational cost is significantly reduced. Using the beam FE model, the mechanical behavior of
helically stranded cables is analyzed under axial and transverse loadings. The numerical results are com-
pared with those of full solid FE models and available experimental results, where accuracy and compu-
tational cost are investigated. This paper also proposes a practical procedure for torque balance design of
helically stranded cables using the proposed beam FE model.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cables and ropes that consist of helically stranded wires have
been used in a wide range of engineering applications, and the
understanding of their mechanical behavior is a very important
issue for cable designers and manufacturers; however, it is not
easy to formulate accurate predictions regarding the behavior of
these wires because of the corresponding complex geometry and
the internal contacts that exist between the individual wires.
While experimental tests are necessary for the attainment of
accurate predictions (see the previous works by Utting and Jones
[1–3]), laboratory experiments are typically very expensive and
difficult to conduct. The analytical or numerical modeling of cables,
if sufficiently accurate, can replace such costly tests, which are

carried out routinely by cable manufactures, and can lead to a
considerable cost reduction.

Several analytical models [4–10] that enable the prediction of
the mechanical behavior of cables and ropes under various loading
conditions are available. Although these analytical models are
simple and easy to use, the validity of these models is limited for
simple stranded cables under axial loading because of the difficulty
regarding the consideration of the complicated geometry, the
material, and the complex contact behavior among the individual
wires; in particular, wire-to-wire contact behavior is very
complicated.

The finite element analysis has been successfully used to pre-
dict the behavior of cables; in particular, full solid finite element
(FE) models have been developed for which the wire-to-wire con-
tact, the wire yielding, and various loading conditions are consid-
ered (see Refs. [11–17]). The predictive ability of the full solid FE
models regarding the complicated behavior of wires are far more
accurate than those of the analytical models; however, in terms
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of helically stranded cables, this kind of modeling is not trivial. All
of the individual wires must be precisely placed in the FE model
and must be in contact with each other without penetration to
avoid the emergence of numerical instabilities during a nonlinear
solution procedure; furthermore, to accurately capture the geome-
try of the wires and to model the complicated wire-to-wire contact
conditions, very fine meshes that can incur a considerable compu-
tational cost are required.

In the cable design phase, full solid FE models are quite often
the cause of a time delay that may result in losses of opportunity
and profit for a new cable product. To overcome this problem, ana-
lysts have come up with strategies such as the use of coarse mesh,
or even an adjustment of the element size; however, these strate-
gies can be very labor intensive and do not always work, and this
could be why the full solid FE model for analysis of helically
stranded cables is a very good solution but has a limitation in
applying it to cable design. Overcoming this limitation is a major
interest of cable designers and manufacturers. The cable designers
require a tool that is reasonably accurate and simple to use; this is
especially important during the preliminary design stage of a new
cable system. This outstanding need is the motivation of this work.

In this study, we propose a beam FE model for a computation-
ally efficient prediction of the mechanical behavior of helically
stranded cables whereby complicated contacts and the elastoplas-
tic behavior of wires are included; here, the wires are modeled
using beam finite elements, and the wire-to-wire contacts are
modeled using beam-to-beam contacts. Compared to the solid FE
models, the degrees of freedom (DOFs) are significantly reduced,
but the resulting predictive capability is as good as those of the
solid FE models; furthermore, a large modeling effort is saved
because the beam FE model is very effective in terms of both accu-
racy and computational cost.

The torque balance design of cables is very important for the
prevention or minimization of an undesirable twist, which is due
to the coupling between the stretching and the twisting when
cables are axially loaded with tension. The torque balance design
generally requires a large number of torque analyses, and these
must be performed accurately during the preliminary design stage.
The solid FE models are proper in terms of accuracy, but the com-
putational costs are too high; indeed, the solid models have not
been used for the torque balance design of cables in engineering
practice, where the use of the beam FE models can be a practical
solution. In this paper, a design procedure for the achievement of
the torque balance of helically stranded cables is suggested,
whereby the proposed beam FE model is used.

This paper is organized as follows: The basic background theory
of helically stranded cables under axial loading is introduced in
Section 2; the FE models for the prediction of the mechanical
behavior of the cables are presented in Section 3; in Section 4,
the computational cost are investigated, and the accuracies of the
FE models are verified through a comparison of the numerical
results to the analytical and experimental results; a procedure
for the torque balance design of the cables is proposed in Section 5;
and the conclusions are given in Section 6.

2. Basic background theory

In this section, the equations regarding an understanding of
basic cable mechanics under axial loading are provided, and these
are also used for the comparison with numerical results.

In helically stranded cables, the kinematics of axial stretching
and twisting are coupled together, and twisting can therefore occur
under a pure axial loading; in such a case, it can be assumed that
all of the wires in a given layer carry exactly the same loads. Global
cable kinematics are designated by the cable axial strain e and the

cable twist rate dh=h (twist per unit length). The linear elastic
response is governed by the following equation:

FT

MT

� �
¼ Kee

Khe

�
Keh

Khh

� e
dh=h

� �
; ð1Þ

where FT and MT are cable axial force and cable torsion, respec-
tively, and in the stiffness matrix components, the subscripts e
and h denote axial stretch and twisting, respectively.

Fig. 1(a)–(c) shows the geometry of a single-layer helically-
stranded cable and the developed geometry of a helical wire.

The axial strain and shear strain of the cable are given by the
following equation:

e ¼ dh
h
; c ¼ r

dh
h

� �
tana; ð2Þ

where h is cable length, rc is core radius, rw is wire radius, r is wire
centerline radius ðrc þ rwÞ, c is shear strain, h is twist angle (rad),
and a is helix angle. It is assumed that the axial strain is constant
in both the core and the wires, and that the shear strain is constant
in the wires. The shear strain is not induced in the core due to the
axial loading.

In Fig. 1(c), the following relations can be established:

h ¼ l sina; rh ¼ l cosa; ð3Þ
where l is the length of the helical wire in the developed geometry.

It is assumed that the core is rigid radially, the deformation is
small, the material is linear elastic and isotropic, and the slips
between the wires are ignored. The axial strain of the helical wire
ew is then obtained by the following equation:

ew ¼ dl
l
¼ e sin2 aþ c cos2 a: ð4Þ

The equilibrium equations for the resultant forces and moments
can be derived for a general twisted and bent rod [5]. As shown in
Fig. 1(d), s is the arc length along the wire, and Fx, Fy, and Fz are the
forces acting on the wire in the x, y, and z directions, respectively.
Mx and My are the bending moments about the x axis and y axis,
respectively, and Mz is the twisting moment acting on the wire.
jx and jy are the curvatures in the x and y directions, respectively,
and s is the twist per unit length.

Assuming that there is no curvature in the x direction, the
changes of the curvature Djy and the twist Ds can be calculated
by the following equations, respectively:

Djy ¼ � sin 2a
da
r

� �
¼ � sin 2a sina cosaðe� cÞ; ð5Þ

Ds ¼ d
sina cosa

r

� �
¼ cos 2a sina cosaðe� cÞ; ð6Þ

and the final curvature jy and twist s with their initial values jy0

and s0 are given by

jy ¼ jy0 þ Dj ¼ cos2 a
r

� sin 2a sina cosaðe� cÞ; ð7Þ

s ¼ s0 þ Ds ¼ sina cosa
r

þ cos 2a sina cosaðe� cÞ: ð8Þ

From the equilibrium equations,My, Mz, Fy and Fz can be simply
expressed as the following formulas:

My ¼ EIDjy; Mz ¼ GJDs; Fy ¼ Mzjy �Mys; Fz ¼ EAew; ð9Þ
where E is the Young’s modulus of the wire, I is the moment of iner-
tia of the helical wire cross section, J is the polar moment of inertia
of the helical wire cross section, and A is the cross sectional area of
the helical wire.
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