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a  b  s  t  r  a  c  t

Bayesian  calibration  as proposed  by Kennedy  and  O’Hagan  [22]  has been  increasingly  applied  to  building
energy  models  due  to its ability  to  account  for the  discrepancy  between  observed  values  and  model
predictions.  However,  its application  has been  limited  to  calibration  using  monthly  aggregated  data
because  it  is computationally  inefficient  when  the  dataset  is  large.  This  study  focuses  on  improvements
to  the  current  implementation  of  Bayesian  calibration  to building  energy  simulation.  This  is  achieved  by:
(1)  using  information  theory  to  select  a representative  subset  of the entire  dataset  for  the  calibration,
and  (2)  using  a more  effective  Markov  chain  Monte  Carlo  (MCMC)  algorithm,  the  No-U-Turn  Sampler
(NUTS),  which  is  an  extension  of  Hamiltonian  Monte  Carlo  (HMC)  to  explore  the  posterior  distribution.
The  calibrated  model  was  assessed  by  evaluating  both  accuracy  and  convergence.

Application  of the proposed  method  is  demonstrated  using  two cases  studies:  (1) a  TRNSYS  model  of
a  water-cooled  chiller  in a  mixed-use  building  in  Singapore,  and (2)  an  EnergyPlus  model  of  the  cooling
system  of  an  office  building  in  Pennsylvania,  U.S.A.  In both  case  studies,  convergence  was  achieved  for  all
parameters  of  the  posterior  distribution,  with  Gelman–Rubin  statistics R̂ within  1 ±  0.1. The  coefficient
of  variation  of  the  root  mean  squared  error  (CVRMSE)  and normalized  mean  biased  error  (NMBE)  were
also  within  the  thresholds  set  by  ASHRAE  Guideline  14  [1].

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

BEM is increasingly being used for the analysis and prediction
of building energy consumption, M&V  and the evaluation of ECMs.
To ensure the reliability and accuracy of an energy model, model
calibration has been recognized as an integral component to the
overall analysis [40]. Calibration can be viewed as the process of
tuning model parameters until the simulation predictions match
the observed values reasonably well. However, models are only as
accurate as the inputs provided and detailed information is sel-
dom available because it may  be prohibitively expensive or even
impossible to measure every tuning parameter of the model. Con-
sequently, calibrating these models with limited data can often lead
to over-parameterization and equifinality (i.e., the model param-
eters are not uniquely identifiable) [2]. Additionally, buildings are
made up of complex systems interacting with one another and thus
no single model is beyond dispute. Therefore, it is clear that there is
a need for a calibration framework that is able to account for uncer-
tainties in the modeling procedure [3]. Incorporating uncertainty
would also allow risk to be better quantified. For instance, a risk-
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conscious decision-maker would prefer an ECM that yields a higher
probability of guaranteed savings while a risk-taking decision-
maker would prefer an ECM that yields the highest expected value
[18].

Most calibration approaches that have been proposed are
manual approaches that require the energy modeler to iteratively
adjust individual parameters until a calibrated solution is achieved
[9]. Westphal and Lamberts [48] used sensitivity analysis to first
identify influential parameters, which were then adjusted to match
simulation output to measured data. Through a case study, the
approach was  shown to be able to achieve a 1% difference between
simulated annual electricity consumption and actual consumption.
Using information from walk-through audits and end-use energy
measurements, Pedrini et al. [35] carried out monthly calibrations
and significantly reduced the difference between simulated annual
electricity consumption and actual consumption. Tools such as
graphical plots [40,28] and version control [39] have also been
shown to be useful aids for guiding the calibration process. The
main advantage of manual approaches is that model parameters
are adjusted based on heuristics that are based on the expertise
of an experienced modeler. However, these approaches are time
consuming and labor intensive. They also rely heavily on the skills
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Nomenclature

Abbreviations
BEM building energy model/modeling
COP chiller coefficient of performance
CVRMSE coefficient of variation of the root mean squared

error
ECM energy conservation measure
GP Gaussian process
HMC Hamiltonian Monte Carlo
IoT Internet of things
KL Kullback–Leibler
M&V  measurement and verification
MCMC  Markov chain Monte Carlo
NMBE normalized mean biased error
NUTS No-U-Turn Sampler
RWM  random walk metropolis

Physical quantities
ṁchw chilled water mass flow rate [kg/h]
Q̇load cooling coil load [W]
V̇chw chilled water flow rate [m3/s]
V̇frac fraction of peak chilled water flow rate [–]
Tchw,in chilled water inlet temperature [◦C]
Tchw,set chilled water setpoint temperature [◦C]
Tcw,in condenser water inlet temperature [◦C]

Uppercase Roman letters
R̂ Gelman–Rubin statistics
D dataset
J information or Kullback–Leibler divergence
L number of leapfrog steps
N = n + m
P percentile
Q sample quality
S sampling schedule

Lowercase Roman letters
c number of bins or categories after discretizing
m number of simulation data
n number of observed values
p number of input factors
q number of calibration parameters
r number of attributes
s starting sample size
t calibration parameters
x input factors
y(x), y observed output
z =[y1, . . .,  yn, �1, . . .,  �m]

Greek letters
ı(x) discrepancy between simulation predictions and

observed output
�(x) observation errors
�(x, t), � simulator output
� variance hyperparameter of GP model
� mean value of elementary effects
�* absolute mean value of elementary effects
� = exp(−ˇ/4)
� covariance matrix
� standard deviation
	 uncertain parameters

and expertise of the modeler, making it harder to reproduce
and thus restrict its widespread adoption. To overcome these

Superscript
ı discrepancy term
� simulator
f field data
S simulation data
T transpose of a matrix

Subscript
ı discrepancy term
� simulator
i, j, k parameter or variable index
sub subset of data
y observations

Other symbols

2 Euclidean distance
∈ a member of
P  probability
R  real numbers

drawbacks, there has been increasing research towards the devel-
opment of analytical or mathematical techniques to assist the
calibration process [9].

For example, Sun et al. [45] proposed a pattern-based auto-
mated calibration approach that uses programmed logic to identify
calibration parameters that would be tuned to minimize biases
between simulated and actual energy consumption. In their “auto-
tune” project, Chaudhary et al. [6] proposed a methodology that
leverages on large databases of simulation results and an evolu-
tionary (meta-heuristic optimization) algorithm to automate the
calibration process. Optimization approaches involve defining an
objective function such as minimizing the mean squared difference
between simulation predictions and measured data. To prevent
unreasonable parameter values, the objective function can be aug-
mented with penalty functions that penalizes solutions that differ
significantly from the base-case [5].

Due to its ability to naturally incorporate uncertainties, Bayesian
calibration is another automated approach that is quickly gaining
interest. In particular, the formulation proposed by Kennedy and
O’Hagan [22] has been increasing applied to BEM [18,41,17,27,7,30]
because it explicitly quantifies uncertainties in calibration param-
eters, discrepancies between model predictions and observed
values, as well as observation errors. With the emergence of IoT and
as more sensors get deployed in buildings, there is an opportunity to
constantly update and adjust model parameters through continu-
ous calibration. A Bayesian approach provides a flexible framework
for dynamically updating a BEM. As new data arrive, the old data
is not discarded but instead assimilated to the new data through
the use of priors [3]. In other words, the previous posterior density
acts as the prior for the current calibration, thus providing a very
systematic framework for the continuous calibration or updating
of the energy model.

Despite several successful applications of Bayesian calibration to
BEM, challenges remain in its widespread adoption. First, Bayesian
calibration is typically carried out using RWM  or Gibbs sampling.
An inherent inefficiency of these algorithms can be attributed to
their random walk behavior as the MCMC  simulation can take a long
time zig-zagging while moving through the target distribution [12].
Second, current application as described in [18] is computationally
prohibitive with larger datasets. As a result, Bayesian calibration
has been limited to monthly calibration data.

The objective of this paper is to address these challenges by
proposing a systematic framework for the application of Kennedy
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