Accepted Manuscript

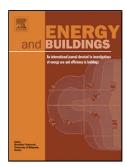
Title: Adapted time step to the weather fluctuation on a three dimensional thermal transient numerical model with sun

patch: application to a low energy cell

Authors: Auline Rodler, Joseph Virgone, Jean-Jacques Roux

PII: S0378-7788(17)30769-7

DOI: http://dx.doi.org/10.1016/j.enbuild.2017.09.027


Reference: ENB 7946

To appear in: *ENB*

Received date: 3-3-2017 Revised date: 24-7-2017 Accepted date: 11-9-2017

Please cite this article as: Auline Rodler, Joseph Virgone, Jean-Jacques Roux, Adapted time step to the weather fluctuation on a three dimensional thermal transient numerical model with sun patch: application to a low energy cell, Energy and Buildingshttp://dx.doi.org/10.1016/j.enbuild.2017.09.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adapted time step to the weather fluctuation on a three dimensional thermal transient numerical model with sun patch: application to a low energy cell.

Auline RODLER^{1,3}, Joseph VIRGONE², Jean-Jacques ROUX ^{1,3}

- 1 : Université de Lyon, CNRS UMR 5008, France / Present address : IRSTV, 1 Rue de la Noë, 44300 Nantes
- 2 : Université Lyon 1, CETHIL UMR 5008, F-69622 Villeurbanne, France
- 3: INSA-Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France

Corresponding author: joseph.virgone@univ-lyon1.fr

ABSTRACT

In the case of highly efficient buildings the solar and internal gains have a higher impact on the energy balance than on classical constructions, with lower insulation.

In this context, a model was developed which considers the three dimensional heat transfers through the walls. It simulates the transient behavior of rooms with the use of a refined spatial and temporal discretization and considers the projection of solar radiation through a window onto interior walls, referred to as sun patch. Validation of the model was carried out using experimental data from a low energy cell operating in a natural climate.

Shorter sampling steps seem necessary to consider accurately the fluctuations of the weather data and the short dynamics of the systems such as the regulated heaters. In this paper, simulations with weather data at different time steps (1min, 10min and 1 hour) are going to be analyzed. The impact of the contribution regarding the adaptive and variable time step of the differential equation solver will also be shown. Finally, the impact of the different time steps on the accuracy of the low energy cell's temperatures and heating loads will be discussed.

keywords: weather fluctuation; adaptive integration time step; sun patch; three dimensional envelope model; low energy cell

NOMENCLATURE

Symbols:

- λ thermal conductivity, W.m⁻¹.K⁻¹
- C heat capacity, J.m⁻3.K⁻¹
- dt time step, s
- S surfaces matrix, m²
- T temperature, K
- P heating power, W

Download English Version:

https://daneshyari.com/en/article/4918856

Download Persian Version:

https://daneshyari.com/article/4918856

<u>Daneshyari.com</u>