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a  b  s  t  r  a  c  t

Simulation-based  building  retrofit  analysis  tools  and electricity  grid  expansion  planning  tools  are  not
readily  compatible.  Their  integration  is required  for  the  combined  study  of building  retrofit  measures
and  electrified  heating  technologies  using  low-carbon  electricity  generation.  The  direct  coupling  of  these
modelling  frameworks  requires  the  explicit  mathematical  representation  of  Energy  Conservation  Mea-
sures  (ECMs)  in  building-to-grid  energy  system  models.  The  current  paper  introduces  an  automated
calibration  methodology  which  describes  retrofitted  buildings  as parametric  functions  of  ECMs.  The
buildings  are  represented  using a lumped  parameter  modelling  framework.  A  baseline  model,  repre-
sentative  of the  building  prior  to  retrofit,  and  the retrofit  functions  are  calibrated  using  Particle  Swarm
Optimization.  Synthetic  temperature  and  heating  load  time-series  data  were  generated  using  an Ener-
gyPlus  semi-detached  house  archetype  model.  The  model  is representative  of  this  residential  building
category  in  Ireland.  It  is shown  that  the  proposed  methodology  calibrates  retrofitted  building  models  to
an acceptable  level  of  accuracy  (MAE  below  0.5 ◦C). The  methodologies  introduced  in the  current  paper
are  capable  of generating  lumped  parameter  building  models  with  similar  dynamics  for  different  ECMs
for  any  archetype  building  energy  model.  The  identified  building  retrofit  models  have  the  potential  to  be
integrated  with  electricity  grid  models  in  a computationally-efficient  manner.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Decarbonization of the residential sector in Ireland

Current European policy targets a reduction of greenhouse gas
(GHG) emissions by at least 80% below 1990 levels by 2050, includ-
ing a 95% abatement of GHG emissions in the building sector [1].
Buildings represent 40% of global energy consumption and account
for nearly 30% of energy related global GHG emissions [2]. In the
Irish context, the residential sector represents 25% of the primary
energy supply [3] and a quarter of energy related CO2 emissions
in 2015 [4]. One approach to decarbonise the Irish residential sec-
tor using current technologies is the implementation of effective
Energy Conservation Measures (ECMs), including upgrades of heat-
ing systems [5]. Ahern et al. [6] determined that building retrofit
measures have the potential to reduce by 65% the heating costs
and CO2 emissions for detached rural houses built prior to 1979
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(approximately 20% of the Irish domestic dwelling stock). Ahern
et al. conclude that government incentives (such as the Better
Energy Homes scheme [7]) are required to incentivise retrofit, given
the significant upfront cost for end users. Without monetary or eco-
nomic incentives, home owners are unlikely to carry out energy
efficiency measures [8].

The Irish Government estimates an investment of 35 billion
EUR (20,000 EUR per dwelling) is required to bring the domestic
stock (as of 2015) to an efficient level of energy performance (BER
rating B) [9]. There is a need for the study of techno-economic
mechanisms by which the environmental and economic benefits
of government investment in Energy Conservation Measures are
maximized. One such mechanism corresponds to the electrification
of domestic space heating and domestic hot water supply. Under
this mechanism, efficient electrified heating technologies such as
heat pumps and storage heating [10] displace the CO2 emissions
arising from fossil fuel consumption for heating. The displaced CO2
emissions are abated by the usage of low-carbon electricity genera-
tion assets. In 2015, fossil fuels accounted for 61% of energy-related
CO2 emissions in the residential sector [4]. During the same period,
electricity accounted for only 25% of residential final energy use [3].
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Nomenclature

Variables and parameters
A area [m2]

 ̨ calibration parameter (exponential approximation)
[–]

 ̌ calibration parameter (exponential approximation)
[–]

C Lumped capacitance [J/kg K]
d weather disturbances
�R  variation in lumped resistance [m2 K/W]
�p variation in calibration parameters
�Tavg variation in annual average internal temperature

[◦C]
�x  variation in layer thickness increment [m]
F set of fixed parameters (calibration)
In set of thermal nodes adjacent to node n
J(·) calibration cost function
g solar transmittance (window) [–]
� thermal conductance [W/m K]
M index for external insulation (ensemble)
n number of insulation steps
nl number of layers in a wall
nC number of capacitances
nR number of resistances
N index for internal insulation (ensemble)
NH calibration horizon [time steps]
O index for ceiling insulation (ensemble)
p set of calibration parameters
Q heating load [W]
R lumped resistance [m2 K/W]
T temperature [◦C]
u heating load [W]
U thermal transmittance (U-value) [W/m2 K]
V set of variable parameters (calibration)

Subscripts
0 baseline model (calibration parameters)
att attic
amb  outdoor temperature
c ceiling node
ceil ceiling insulation
data synthetic data
ext external insulation
gnd ground node
heat heat input
int internal insulation
inf infiltration
k time-step index (building model thermal evolution)
l time-step index (Particle Swarm Optimization)
r room temperature
M,  N, O calibration parameter point (ensemble)
s solar gains
si inside surface resistance [m2 K/W]
so outside surface resistance [m2 K/W]
wall external walls
win window
theo theoretical value (resistance or capacitance)
total total construction resistance
w wall node

Superscripts
� optimal (calibrated) parameter

Acronyms
ACH air changes per hour
BEMS Building Energy Model Simulation
CV(RMSE) Coefficient of Variation of Root Mean Square Error
ECM Energy Conservation Measure
EPS expanded polystyrene
GA Genetic Algorithm
GAMS General Algebraic Modelling System
GHG greenhouse gas (emission)
IWEC International Weather Energy Conversion
LP linear program
MAE  Mean Average Error
MILP Mixed Integer Linear Program
MBE  Mean Biased Error
PSO Particle Swarm Optimization
SEAI Sustainable Energy Authority of Ireland
SQP Sequential Quadratic Programming

Furthermore, wind generation represents 23% of electricity
generation and it is likely to increase in order to meet the Irish
Government target of 40% generation using Renewable Energy
sources [11]. Storage heating becomes a technology of interest as it
has the potential to provide power system operators with demand
management alternatives while increasing the usage of electricity
generation assets [12].

The interconnection between building retrofits, electrified heat-
ing technologies and low-carbon electricity generation is evident.
If energy efficiency measures and electrified heating systems are
combined, the carbon emissions associated with domestic space
heating and domestic hot water can potentially be displaced by
low-carbon power generation. At an aggregated level, building and
grid model integration has the potential to reduce peak electricity
consumption and defer future investments in electricity genera-
tion capacity. Furthermore, heating storage can further minimize
generation cost by shifting demand from excess wind produc-
tion to domestic heat storage units. The integrated assessment
of building retrofit measures, electrified heating technologies and
variable energy generation requires the development of an inte-
grated building-to-grid retrofit modelling framework by which the
overall environmental and economic benefits can be maximized.

1.2. Modelling integrated building and grid retrofit policies

Techno-economic building retrofit optimization often relies on
the coupling of heuristic optimization techniques (e.g., Genetic
Algorithms) and Building Energy Model Simulation (BEMS) tools
[13–16]. In such a framework, the heuristic optimization solver
uses BEMS models in an iterative manner for cost function eval-
uation purposes. However, power systems investment planning
problems are often defined using classical optimization models
such as Mixed-Integer Linear Problems (MILP) (e.g., [17,18]). Prior
work that has addressed building-to-grid analysis focussed on
methodologies that use BEMS and power systems optimization in
a sequential manner. This typically involves the use of BEMS to
generate synthetic building performance data as an input to power
systems optimization tools. Ault et al. [19] adopted this approach
by pre-calculation of heating demand profiles using the ESP-r simu-
lation environment [20]. These heating profiles were used as input
to a power systems optimization study.

A disadvantage associated with this approach is that BEMS are
unable to adapt to dynamic events occurring in the power sys-
tems model (e.g., availability of variable generation or demand
response events) unless a potentially sub-optimal iterative and
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