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a  b  s  t  r  a  c  t

This  study  presents  a  new  physics-based  model  of housing  stock  energy  using  Monte  Carlo,  where
inputs  are  probability  distribution  functions  originated  from  Energy  Performance  Certification  (EPC)  Por-
tuguese  database.  The  overall  performance  of  the  model  in  predicting  the  energy  indicators  used in  EPC  is
extremely  satisfactory,  considering  that  the inputs  required  to run the calculations  are  not  always  avail-
able.  The  model  outputs  are  validated  against  EPC  data  with  residual  sum  of squares  (RSS)  below  2 × 10−3,
except  for  cooling  energy  benchmark  with  RSS below  4 × 10−2.  The  main  output  of EPC,  the distribution
among  classes,  is successfully  reproduced  by the  model,  with  differences  in  the  number  of  occurrences
below  3.1%.  The  developed  model  constitutes  a  tool  that  helps  on further  research  on  energy  policies,
namely,  studying  the  impact  evaluation  of  more  restrictive  thermal  quality  requirements;  evaluating
other  methodological  approaches  to  calculate  energy  indicators;  analysing  policies  of building  elements
retrofitting  and  bottom-up  estimations  of  housing  stock energy  consumption.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Housing stock energy models are predictive tools of the total
energy consumption of a large set of houses in a regional or national
domain. The data source of top-down models are energy consump-
tion time-series of residential sector by energy carrier as well as
other macro-scale indicators. One of the main disadvantages of
these models is their inability to disaggregate energy consump-
tion by end-use, when used alone. Bottom-up models, instead,
extrapolate aggregate values from a sample of houses where energy
consumption by end-use, or even by appliance, are known for
the housing stock. Examples of bottom-up models are statistical
models where historical data are used to find the mathematical
functions that predict energy consumption, this can be done by
regression methods, conditional demand analysis or neural net-
works, according to the categorisation introduced by Swan and
Ugursal [1]. Statistical methods have in common the use of math-
ematical functions not based in building physics.

Physics-based models are also bottom-up models, but are based
on heat transfer analysis and, therefore, they do not require his-
torical data, even if those can be very useful in validating model
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assumptions. Bottom-up physics based models can be categorised
in distributions, archetypes and samples [1]. In the first case, the
required inputs are characterised by distributions from exist-
ing surveys. The main difference between archetypes and sample
approaches is that archetypes are theoretical houses representa-
tive of the common characteristics of a group of real houses, while
the sample approach is constituted by real houses that have been
intensively surveyed.

An important data source for bottom-up physics based models
are the Energy Performance Certificates (EPC) [2], currently manda-
tory for housing transactions such as renting or selling, in most of
the European countries. This data source constitutes a large sample
representative of the housing stock. However, not always all the
information required to apply bottom-up physics based models is
directly available and assumptions from complementary sources
are required in order to provide the required model inputs. A cer-
tain level of assumptions uncertainty exist and should be taken into
account.

Handling uncertainty in building simulation is a well explored
issue, where parameters errors associated with different groups
of variables are taken into account in the prediction of energy
consumption, air temperature or peak loads. Lomas and Eppel
[3] suggested that Monte Carlo is the preferential technique
to obtain the total model sensitivity to multiple variables. Pet-
tersen [4,5] developed a simplified energy calculation model, using
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Nomenclature

a dimensionless parameter of inertia [–]
A area [m2]
Â normalised area (by net floor area) [–]
ACH air changes per hour [h−1]
btr adjustment factor [–]
c specific heat [J kg−1 K−1]
Êres normalised (by net floor area) annual energy gener-

ated using renewable energy sources [kWh m−2]
f fraction of energy supplied by a system [–]
fw fraction of windows by orientation [–]
Ff fins shading correction factor [–]
Fg glazed windows fraction [–]
Fh horizon shading correction factor [–]
Fo overhangs shading correction factor [–]
Fs shading correction factor [–]
Fsh time fraction for movable shading devices activation

[–]
Fw correction factor for non-scattering glazing [–]
ggl⊥ glazing g-value at normal incidence [–]
gsh glazing g-value with fully active shading devices [–]
GH monthly horizontal global solar radiation

[kWh m−2]
GS monthly global solar radiation on South faç ade

[kWh m−2]
h ceiling-to-floor height [m]
H global heat transfer [W K−1]
Ĥ normalised (by net floor area) global heat transfer

[W K−1 m−2]
HDD heating degree-days [K day]
l� length of linear thermal bridges [m]
M heating season length [months]
N number of bins
Q̂ normalised (by net floor area) annual energy

[kWh m−2]
p certificates fraction by bins interval [–]
R ratio between total energy demand and the corre-

sponding benchmark [–]
R2 determination coefficient [–]
Rse external thermal resistance [m2 K W−1]
U overall thermal transmittance [W m−2 K−1]
V water volume [m3]
w weighted energy factor [–]

 ̨ absorption coefficient of external envelope [–]
� gain-to-heat transfer ratio [–]
ı overheating index [–]
�� water temperature difference [K]
� system efficiency, COP or EER [–]
�gn gain utilisation factor [–]
�̄e average air temperature [K]
� (first) shape factor of Weibull and Burr distributions
� scale factor of Weibull and Burr distributions
	 average of Gaussian distribution

 second shape factor of Burr distribution
� density [kg m−3]
� standard deviation of Gaussian distribution
� linear thermal bridge transmittance [W m−1 K−1]

Subscripts
a air
b benchmark
C cooling

e external envelope
f net floor
g ground floor
gn gains
ht heat transfer
H heating
i internal envelope
n orientation
j energy carrier
k energy supply system
op opaque envelope
sol solar effective collecting
tr transmission
T total
ve ventilation
w windows
W water

Monte Carlo, for a dwelling where a large number of param-
eters – climate, building and inhabitants related – are inputs in
the form of probability distribution functions. Macdonald and
Strachan [6] introduced in ESP-r, a building simulation tool, the
capability of taking into account the inputs error using the Monte
Carlo approach. However, most of the studies, such as the afore-
mentioned, concern the uncertainty analysis on a single building
where the number of uncertain parameters is already high.

For building stock analysis the uncertainty is even more rel-
evant by the enormous number of required inputs [7]. Hughes
et al. [8] analysed the uncertainty of 37 parameters, using Monte
Carlo, on a domestic energy consumption model in order to assess
the energy and environmental impacts of changes in the housing
stock. The main constraint of the study is that most of the vari-
ables are described by uniform distribution functions around a
mean value with a range of error. Authors recognise that this issue
could be improved with better information sources. On the other
hand, Kavgic et al. [9] used also Monte Carlo to study the space
heating energy consumption of the Belgrad’s housing stock, apply-
ing different types of probability distribution functions. However,
calculations use as a starting point standard space heating energy
demand and, therefore, the model is a bottom-up model, but not
a physics based one. Soto and Jentsch [10] tested the Monte Carlo
analysis to study the uncertainty of seven bottom-up models, from
those only three of them are physics based, since they effectively
calculate energy demand.

The current study aims at implementing and testing the use of
Monte Carlo, to handle with the large amount of EPC data. This
database could theoretically constitute a valuable sample of the
building stock if all the parameters required to apply physics based
models were known. However, for a large number of parame-
ters some ‘guessing’ exercise is required and other complementary
sources should be used. In synthesis, the main goal is to use Monte
Carlo to create a theoretical sample,  made of all the inputs required
for physics based models, that has the same behaviour of a real but
incomplete sample.

The Monte Carlo is here tested to describe the variability of cli-
mate and building related parameters because those can be directly
validated by EPC data. However, the methodology can be extended
to other groups of inputs, for example those related to energy
use behaviour, where uncertainty and variability is much higher.
The next section explores the fundamental pillars that characterise
housing stock bottom-up physics based models.



Download English Version:

https://daneshyari.com/en/article/4918931

Download Persian Version:

https://daneshyari.com/article/4918931

Daneshyari.com

https://daneshyari.com/en/article/4918931
https://daneshyari.com/article/4918931
https://daneshyari.com

