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a  b  s  t  r  a  c  t

Fossil  fuels  serve  a substantial  fraction  of  global  energy  demand,  and  one  major  energy  consumer  is  the
global  building  stock.  In  this  work,  we  propose  a  framework  to  guide  practitioners  intending  to  develop
advanced  predictive  building  control  strategies.  The  framework  provides  the  means  to  enhance  legacy
and modernized  buildings  regarding  energy  efficiency  by  integrating  their  available  instrumentation
into  a  data-driven  predictive  cyber-physical  system.  For  this,  the  framework  fuses  two  highly  relevant
approaches  and  embeds  these  into  the  building  context:  the  generic  model-based  design  methodology  for
cyber-physical  systems  and the cross-industry  standard  process  for  data  mining.  A Spanish  school’s  heat-
ing  system  serves  to validate  the  approach.  Two  different  data-driven  approaches  to prediction  and
optimization  are  used  to demonstrate  the  methodological  flexibility:  (i)  a combination  of Bayesian  reg-
ularized  neural  networks  with  genetic  algorithm  based  optimization,  and  (ii) a  reinforcement  learning
based  control  logic  using  fitted  Q-iteration  are  both  successfully  applied.  Experiments  lasting  a  total  of  43
school  days  in winter  2015/2016  achieved  positive  effects  on  weather-normalized  energy  consumption
and  thermal  comfort  in  day-to-day  operation.  A first  experiment  targeting  comfort  levels  comparable
to  the  reference  period  lowered  consumption  by one-third.  Two  additional  experiments  raised  average
indoor  temperatures  by 2 K.  The  better  of  these  two experiments  only  consumed  5%  more  energy  than
the  reference  period.  The  prolonged  experimentation  period  demonstrates  the  cyber-physical  system-
based  approach’s  suitability  for  improving  building  stock  energy  efficiency  by  developing  and  deploying
predictive  control  strategies  within  routine  operation  of typical  legacy  buildings.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivation

On a global scale, buildings are major consumers of energy
that produce significant amounts of greenhouse gas emissions. For
example, US building stock (residential and commercial) accounted
for 41% of the US’ primary energy use in 2010 [1], of which fossil
fuels served 75%. In Europe, the ODYSEE and MURE databases indi-
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cate that buildings accounted for 40% of the EU-28 final energy use
in 2012, with residential buildings being responsible for two-thirds
of the total building consumption [2]. These figures stress that
improving the energy efficiency of building stock is paramount to
address resource scarcity and realize international climate preser-
vation goals. Different studies of buildings over their life-cycle
phases show that for typical buildings, irrespective of the type
of construction, the operational phase accounts for up to 90% of
lifetime energy use [3]. For low energy buildings, the operation
phase’s proportion still reaches 50%. Buildings use 60% of their con-
sumption for thermal end uses: space heating, space cooling, and
water heating [1]. Thus, one promising direction for improving the
energy efficiency of buildings is to focus on improving the opera-
tional strategies of their thermal systems by predictive analytics –
an approach complementary to refurbishment measures.
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1.2. State of the art

Current research on predictive building control strategies
achieves high increases of performance by relying on predictive
models learned from sensor data:

• [4] optimizes the operation of a multi-zone heating, ventila-
tion and air conditioning (HVAC) system using neural networks
for room temperature and energy consumption, taking relative
humidity and room temperature as the input. The system controls
the supply air’s static pressure set-points to minimize energy sub-
ject to comfort conditions. The study’s approach to validation
is computational, based on data of a single day. Energy sav-
ings range between 2% (most strict comfort constraints) and 17%
(most relaxed constraints).

• Related to [4], [5] extends the energy optimization to consider
also indoor CO2 levels. Compared to seven other regression
models, a neural network ensemble performed best. A modified
particle swarm optimization algorithm solves for Pareto-optimal
solutions of indoor air quality, comfort, and energy consumption.
Different weightings of these objectives create different Pareto-
optimal trade-offs. Regression models created from a recorded
two week period indicate average estimated electricity savings
of 12–17%.

• [6] uses neural networks and multi-objective optimization for
HVAC operation to minimize economic cost while ensuring
user comfort. The study takes into account indoor tempera-
tures, schedule information, cost, and weather variables. Energy
consumption is documented for three out of a total of six exper-
iments conducted in winter and summer seasons at University
of Algarve, Portugal. The experiment lengths are relatively short
with a maximum of two days. The results suggest financial sav-
ings while spending more energy to ensure minimized comfort
violation: “savings in the order of 50% are to be expected”.

• Starting from a thermal building simulation, [7] proposes – after
a pre-processing stage of sensitivity analysis and principal com-
ponent analysis (PCA) – to use neural networks to learn building
behavior regarding energy and comfort subject to control actions.
The genetic algorithm [8] is then applied to derive building
control rules. A knowledge base stores these, enabling facility
managers e.g. to strive for energy savings targets. The approach
is verified using three months of simulation and two months of
experiments for a care home in the Netherlands where heating
supply, window opening, the degree of shading, and light lev-
els can be controlled. Weather-normalized energy savings reach
approximately 25%.

• [9] applies reinforcement learning to optimize heat pump oper-
ation. The study demonstrates energy savings of 4–11% for two
different buildings by simulation of winter and summer seasons.

• [10] applies reinforcement learning to control the operation of
blinds and lights in an office, taking into account also user feed-
back on the comfort achieved. Experiments show that 92% of the
users reported high satisfaction, while the control also showed
energy savings potential of up to 10% when considering lighting
in combination with cooling load.

• [11] uses an ensemble of neural networks to assist batch
reinforcement learning in creating an effective HVAC demand
response controller able to control on-off decisions. A simula-
tion of 40 days with different temperature regimes validates the
approach. After collecting 16 data of days, the inferred control
policies are stable within 90% of the mathematical optimum. A
shorter experiment in a living lab verifies the findings qualita-
tively.

• For a Swiss low exergy residential building, [12] controls the mass
flow parameter through a photovoltaic-thermal array to improve
power output. Validation is performed by simulation: over the

Fig. 1. The common three layer BMS  structure described in [14]. Own illustration.

course of three simulated years, a 5–11% power improvement
is achieved compared to a rule-based controller configured by
domain experts.

• [13] applies reinforcement learning to data-driven predictive
HVAC control. For reasons of scalability, the work uses weighted
learning in a distributed multi-agent setting. A toy example opti-
mizing the heating of two  different zones validates the approach’s
concept.

In larger facilities, it is common to encounter automation sys-
tems of varying complexity and sophistication. Commonly these
are controlled by building management systems (BMS) intended
to help facility staff to conveniently and efficiently operate build-
ing systems. Most often, these systems provide basic means of
configuration, e.g. simple supervisory control rules and schedules.
In building automation, hierarchical system structures are very
common. According to [14], these are typically designed in a three-
layered architecture as illustrated in Fig. 1:

1. The lowest layer, the so-called field level, consists of sensors and
actuation devices.

2. The middle layer (automation level) consists of controllers imple-
menting control loops to meet configured set-points.

3. The top layer, the management level, usually consists of the
computer hosting the BMS  offering a user interface that allows
configuring set-points as well as rules and schedules to change
these. Examples of such simple rules are linear heating set-
point curves based on current outdoor temperatures as well as
scheduled operation such as nightly heating set-back lowering
operating temperatures.

1.3. Contribution

The referenced efforts demonstrate the effectiveness of apply-
ing different methods of regression and optimization to implement
data-driven predictive control strategies in buildings. They focus
extensively on the development and execution of control strategies
as well as the required information to assess performance, but they
do not reference or propose a general methodology that applies
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