Accepted Manuscript

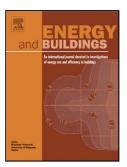
Title: Change Point and Degree Day Baseline Regression Models in Industrial Facilities

Author: Allyson Golden Keith Woodbury Joseph Carpenter

Zheng O'Neill

PII: S0378-7788(17)30828-9

DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2017.03.024


Reference: ENB 7449

To appear in: *ENB*

Received date: 14-4-2016 Revised date: 11-1-2017 Accepted date: 9-3-2017

Please cite this article as: A. Golden, K. Woodbury, J. Carpenter, Z. O'Neill, Change Point and Degree Day Baseline Regression Models in Industrial Facilities, *Energy and Buildings* (2017), http://dx.doi.org/10.1016/j.enbuild.2017.03.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Change Point and Degree Day Baseline Regression Models in Industrial

Facilities

Allyson Golden, Keith Woodbury, Joseph Carpenter¹, Zheng O'Neill

Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487

Abstract

Industrial facilities account for 33% of the annual energy usage within the United States [17] and this

large sector of the domestic energy budget presents significant opportunities for energy efficiency. In

order to effectively analyze energy savings opportunities in industrial facilities, adequate baseline models

of energy usage in the facilities are needed. Multiple methods of creating baseline energy models have

been used in commercial and residential buildings, however, few of these techniques have been made

applied to develop baseline energy models in industrial facilities.

The paper investigates the application of standard regression models used for commercial and residential

buildings to industrial facilities using sparse energy consumption data. An analysis of the effectiveness of

three parameter cooling (3PC) and cooling degree day (CDD) regression models to develop baseline

energy usage models in industrial facilities from commonly available utility bill data is presented. Two

case studies are investigated: in both case studies a comparison between 3PC model and CDD model is

presented. In both cases the baseline regression models meet the recommended NMBE from the

ASHRAE Guideline 14. A method to determine process equipment energy usage and cooling end use due

to internal loads is presented.

Key Words: change-point, cooling degree day, industrial facility energy consumption, regression

1 Introduction

Over the past few decades the topic of energy has become prominent in the sciences, politics, and the

¹ Corresponding Author: Email: jcarpenter@crimson.ua.edu

1

Download English Version:

https://daneshyari.com/en/article/4919173

Download Persian Version:

https://daneshyari.com/article/4919173

<u>Daneshyari.com</u>