Simulation Modelling Practice and Theory 57 (2015) 118-132

Contents lists available at ScienceDirect

4

Simulation Modelling Practice and Theory L
~

journal homepage: www.elsevier.com/locate/simpat

Multi-agent simulation on multiple GPUs @CmssMark
N.M. Ho*?, N. Thoai?, W.F. Wong "*

2 Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, Viet Nam
b School of Computing, National University of Singapore, Singapore

ARTICLE INFO ABSTRACT

Article history: Multi-agent simulation is widely used in many areas including biology, economic, political,
Received 17 March 2014 and environmental science to study complex systems. Unfortunately, it is computationally
Received in revised form 26 June 2015 expensive. In this paper, we shall explore the implementation of a general multi-agent sim-

Accepted 29 June 2015

Available online 17 July 2015 ulation system on a system with multiple GPUs acting as accelerators. In particular, we

have ported the popular Java multi-agent simulation framework MASON to a nVidia
CUDA-based multi-GPU setting. We evaluated our implementation over different numbers

Key W.mdS" . . and types of nVidia GPUs. For our evaluation, we ported three models in the original ver-
Multi-agent simulation
MASON sion of MASON. On the well-known Boids model, we achieved a speedup of 187 x. Using a
Simulation framework fictional model, we showed that speedup of up to 468 x is possible. In the paper, we shall
CUDA also describe the detailed internals of our system, and the various issues we encountered
Multi-GPU computing and how they were solved.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many phenomena and systems in nature involve a large number of interacting individual agents. Multi-agent simulation
[1]is a methodology for the study of such complex systems. In recent decades, with the availability of more compute power,
many simulation frameworks have been developed for various fields of science and engineering. Examples of these include
Swarm [2], MadKit [3] NetLogo [4], Repast [5], SPADES [6], and FLAME [7]. More recent examples include TurtleKit [8] that is
based on the combination of the Madkit kernel and the Logo simulation model, GAMA [9] that integrated GIS data into the
simulation, and Janus [10] that focused on holonic multi-agent applications. MASON [11] was also introduced as a light-
weight simulation framework written in Java that supports flexible scheduling as well as facilities that are easy to use. It
has been well optimized for speed especially when compared to other frameworks [12]. However, even with the advances
in CPU technology, multi-agent simulation is still extremely slow for realistically large scale models that have a large number
of agents with complicated interactions between them.

General purpose processing on Graphics Processing Units (GPU) has emerged as an important technology for accelerating
applications with massive amount of parallelism, including multi-agent simulation. Simulation for many fields of science
and engineering such as traffic [15], soil [16] and blood coagulation system [17] have benefited from its use. In addition
to these specific applications, there were also efforts to implement general cellular-based models on GPUs [18]. However,
such simulation frameworks were implemented on single GPUs [19,20]. These efforts pre-dated modern GPU programming
paradigm such as CUDA [21]. As a result, most of the works focused on the difficult issue of programming using textures. In
addressing this issue, FLAME GPU [22], for example, provided a framework for describing models in the XML format with an

* Corresponding author. Tel.: +65 6516 6902; fax: +65 6779 4580.
E-mail address: wongwf@nus.edu.sg (W.F. Wong).

http://dx.doi.org/10.1016/j.simpat.2015.06.008
1569-190X/© 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2015.06.008&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2015.06.008
mailto:wongwf@nus.edu.sg
http://dx.doi.org/10.1016/j.simpat.2015.06.008
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

N.M. Ho et al./Simulation Modelling Practice and Theory 57 (2015) 118-132 119

abstraction for the user to program the GPU. Writing agent function scripts on FLAME GPU still required programming skills
as the abstract description has a C-based syntax with extensions. FLAME'’s main contribution is in providing a formal method
to describe the simulation models. It also has a simple and extensible visualization facility. Besides FLAME, a single GPU solu-
tion was also implemented in TurtleKit [23] that was demonstrated on diffusion and perception modules in a grid-based
environment. It showed the possibility of not using an all-in-GPU approach when achieving an acceptable speedup.
Recently, a new feature in the JADE [24] simulation framework introduced the ability to execute CUDA agents [25].
However, a CUDA agent is still simply a computational service for other Java agents running on the CPU. It is an
on-demand service which receives the programming code from other agents. So far, the reported experiments have been
about comparing matrix multiplication between CPU and GPU.

The earlier works on single GPU multi-agent simulation systems showed great potentials. There is a good overall match
between multi-agent simulation and the hardware platform. However, the previous works also highlighted issues and the
limitations of single GPU, often stated as ‘future works’. Some of the issues raised are:

e The previous frameworks on GPU support limited kinds of environments and agents, mostly grid-based environment and
boids-like agents.

e When the memory or the cores of a single GPU are fully utilized, introducing more agents will result in the significant
degradation of performance. The only way out is to scale up by migrating to multi-GPU environment.

e Multiple GPUs have a non-uniform memory access (NUMA) memory model that requires explicit memory transfer. It
necessitates additional synchronization processes and changes in the framework, including algorithms.

o To efficiently manage agents and their locations on multiple GPUs, that operate in a non-shared memory environment,
there are no trivial methods or automatic tools available. Therefore, single GPU frameworks do not trivially scale to mul-
tiple GPUs.

The work in [26] also discussed the scaling issue with a note stating their intention to solve it in the future with OpenCL.
Nevertheless, [27] showed that OpenCL performs worse than CUDA. The work in [28] that describes latency hiding schemes
for cellular-based models is one of the few existing related work for solving the scaling issue. These together with the need
for better visualization and GUI tools for real-time analysis motivated the work in this paper. By using the existing facilities
of MASON to describe and simulate models, adding the backend ability to accelerate the core simulation using on multiple
GPUs, we have effectively scaled the framework to tackle larger problems. In particular, the contributions of this paper are:

e We proposed a multi-GPU framework that has the capability of handling data over multiple devices in the simulation, and
also offers the ease of programming in Java. The ideas we proposed can also be used for other implementations, including
OpenCL ones.

e We modified some of the environment facilities of MASON framework to support both single as well as multiple GPUs.

e We introduced some key techniques for handling simulation data, especially how it can be efficiently done on multiple
GPUs.

e By leveraging the features of the MASON framework, our solution enables the use of environments beyond restricted
grids.

e We performed a performance study on our optimized MASON. It shows the potential for speeding up simulations by as
much as two orders of magnitude, depending on the models and hardware configuration.

As far as we know, this paper is among the first to examine the issue of scaling multi-agent simulation using multiple
GPUs.

Intel’s new Many Integrated Core architecture (MIC) has been considered as one of the solutions. Multi-MIC versus
multi-GPU systems have been benchmarked with two different problems in [13,14]. Unfortunately, the result shows that
multi-GPU system achieves better efficiency than multi-MIC even with the same programming effort.

The rest of this paper is organized as follow: Section 2 describes the design and related issues of a hybrid version of
MASON and CUDA. Section 3 presents and explains the implementation of multi-agent simulation on multiple GPUs.
After that, in Section 4, we report the result of our experimental evaluation. Finally, the conclusion will be stated in Section 5.

2. System overview
2.1. System design

Our proposed system combines MASON and JCuda [29] yielding a general multi-agent simulation environment that can
exploit acceleration using multiple GPUs. Specifically, our system performs the simulation task on many GPUs, before using
the visualization capability of MASON to present the results.

The system, as shown in Fig. 1, consists of three components: the visualization, the simulation model and the JCuda
components. The visualization component has a console, a display and other facilities to manipulate the simulation models.
It also has the responsibility for holding the portrayals of fields and inspectors. Other tools such as the charting and media

Download English Version:

https://daneshyari.com/en/article/491918

Download Persian Version:

https://daneshyari.com/article/491918

Daneshyari.com

https://daneshyari.com/en/article/491918
https://daneshyari.com/article/491918
https://daneshyari.com/

