
Accepted Manuscript

Title: Influence of Vegetation, Substrate, and Thermal Insulation of an Extensive Vegetated Roof on the Thermal Performance of Retail Stores in Semiarid and Marine Climates

Author: Sergio Vera Camilo Pinto Paulo Cesar Tabares-Velasco Waldo Bustamante Felipe Victorero Jorge Gironás Carlos A. Bonilla

PII:	S0378-7788(17)31317-8
DOI:	http://dx.doi.org/doi:10.1016/j.enbuild.2017.04.037
Reference:	ENB 7533
To appear in:	ENB
Received date:	30-12-2016
Revised date:	7-3-2017
Accepted date:	12-4-2017

Please cite this article as: S. Vera, C. Pinto, P.C. Tabares-Velasco, W. Bustamante, F. Victorero, J. Gironás, C.A. Bonilla, Influence of Vegetation, Substrate, and Thermal Insulation of an Extensive Vegetated Roof on the Thermal Performance of Retail Stores in Semiarid and Marine Climates, *Energy and Buildings* (2017), http://dx.doi.org/10.1016/j.enbuild.2017.04.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Influence of Vegetation, Substrate, and Thermal
2	Insulation of an Extensive Vegetated Roof on the
3	Thermal Performance of Retail Stores in Semiarid and
4	Marine Climates
5	
6 7	Sergio Vera ^{1,5} , Camilo Pinto ¹ , Paulo Cesar Tabares-Velasco ^{2,*} , Waldo Bustamante ^{3,5} , Felipe Victorero ¹ , Jorge Gironás ^{4,5} , Carlos A. Bonilla ^{4,5}
8 9	¹ Department of Construction Engineering and Management, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
10 11	² Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado, United States
12	³ School of Architecture, Pontificia Universidad Católica de Chile, Santiago, Chile
13 14	⁴ Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
15	5 Center for Sustainable Urban Development (CEDEUS), Santiago, Chile
16	
17 18	* Corresponding author: Paulo Cesar Tabares-Velasco, Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA, email: tabares@mines.edu
19 20	Keywords: Vegetation, Substrate, Thermal Insulation, Extensive Vegetated Roof, Retail Stores, Semiarid climate, Marine Climate, EnergyPlus

22 ABSTRACT

Buildings play an important role in energy use and greenhouse emissions. Vegetated roofs, so-called green roofs, offers many benefits beyond energy savings. Among different building types, retail stores with flat and large roof/walls ratio, offers a match for this technology. Despite this potential in retail stores the literature review shows a lack of studies on the influence of vegetated roofs' design parameters on the thermal and energy performance of retail stores. This study performs a parametric analysis to evaluate the influence of the main green roof design parameters on the thermal performance of a big-box retail stores. The selected climates are semiarid climates of Albuquerque (USA) and Santiago (Chile) and the marine climate of Melbourne (Australia) to inform engineers and architects design of vegetated roofs that fully use their thermal benefits. Based on the analyzed roofs, this study finds that: (1) vegetation can be more effective than insulation on reducing cooling loads due to the evapotranspiration of the vegetation-substrate system and canopy's shading effects and (2) thermal insulation shows significantly larger influence on the stand-alone retail's heating loads than the thermal properties of the substrates and LAI of vegetation.

Download English Version:

https://daneshyari.com/en/article/4919232

Download Persian Version:

https://daneshyari.com/article/4919232

Daneshyari.com