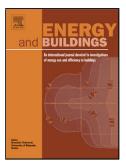
Accepted Manuscript


Title: Comparing methods of modeling air infiltration through building entrances and their impact on building energy simulations

PII:	S0378-7788(16)32020-5
DOI:	http://dx.doi.org/doi:10.1016/j.enbuild.2016.12.071
Reference:	ENB 7250
To appear in:	ENB
Received date:	13-7-2016
Revised date:	26-10-2016
Accepted date:	24-12-2016

Please cite this article as: Sherif Goubran, Dahai Qi, Wael F.Saleh, Liangzhu Leon Wang, Comparing methods of modeling air infiltration through building entrances and their impact on building energy simulations, Energy and Buildings http://dx.doi.org/10.1016/j.enbuild.2016.12.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Comparing methods of modeling air infiltration through building entrances and their impact on

building energy simulations

Sherif Goubran, Dahai Qi, Wael F. Saleh, and Liangzhu (Leon) Wang

Centre for Zero Energy Building Studies, Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada, H3G1M8

CORRESPONDING AUTHOR

Liangzhu (Leon) Wang, Ph.D., P.Eng., Associate Professor

Centre for Zero Energy Building Studies, Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada, H3G1M8.

leon.wang@concordia.ca; lzwang@gmail.com

1-514-848-2424 ext. 5766

Download English Version:

https://daneshyari.com/en/article/4919466

Download Persian Version:

https://daneshyari.com/article/4919466

Daneshyari.com