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a  b  s  t  r  a  c  t

Uncertainty  Quantification  (UQ)  employing  a Monte  Carlo  Sampling  (MCS)  method  in  a building  simula-
tion  domain  has  been  widely  used  to account  for risks  of  predicted  outputs  for robust  decision  making.
However,  the  stochastic  approach  for UQ problems  requires  significant  computational  burdens  compared
to the deterministic  approach.  This  paper  addresses  two  surrogate  models  (Gaussian  Process  Emulator
(GPE)  and  Polynomial  Chaos  Expansion  (PCE))  which  together  can  be regarded  as  a  meta-model  of  a
Building  Performance  Simulation  (BPS)  tool  with  a high-fidelity  model.  In  the  paper,  the  developed  GPE
and  PCE  with  different  model  structures  were  compared  in  terms  of a prediction  capability  under  dif-
ferent  amount  of  training  data  and  number  of  inputs.  The  aim  of  the  comparative  study  is  to  identify
the  relative  prediction  abilities  and  model  flexibility  of  GPE  and  PCE.  It  was  found  that  the GPE  and  PCE
produce  high  performance  qualities  having  fast  computation  speed  compared  to  the  developed  basis
model  if new  inputs  having  identical  inputs  and  probability  ranges  were  used.  In  terms  of  two-sample
Kolmogorov-Smirnov  (K-S)  hypothesis  test,  mean  values  of the  minimum  p-values  of  the  GPE and  PCE
were  0.999  and 0.569,  respectively,  if the  number  of samplings  are  over  30  cases.  Otherwise,  the  PCE
shows  significantly  reduced  performance  quality  than the GPE.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

Recently, Building Performance Simulation (BPS) tools have
been widely used for performance assessments of various sys-
tems due to their attractive abilities for treating energy and mass
flows in building environments. Utilizing the abilities of these BPS
tools, effective answers can be found regarding the various real
problems encountered in building environments from design pro-
cess to operation process. However, approximate modeling levels
would be needed for simulationists to determine definite values
for deriving a simulation domain from a real building domain.
The simulation confirms the definite values in a given building
simulation environment are not easy as it thinks even if the sim-
ulationists combine a distinguished talent. This is because the BPS
tools have been embedded into various uncertainty sources such as
modeling uncertainty, numerical uncertainty, scenario uncertainty,
and specification uncertainty. However, if the simulationists ignore
such uncertainty sources, the predicted outputs might provide
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meaningless information due to performance gaps compared with
the reality. To deal with the aforementioned issue, an uncertainty
analysis based on a stochastic approach has been used to identify
the risks embedded in the simulation domain. This will help to
unveil the problems hidden within the simulation domain based
on deterministic methods.

Considering the uncertainty analysis, a previous studies [1] were
presented based on the International Building Performance Simula-
tion Association (IBPSA) (www.ibpsa.org), following the PhD theses
of de Wit  [2] and Macdonald [3]. In this respect, building experts
have been started to recognize that the performance predictions
of the BPS tools are not deterministic, but stochastic. Neverthe-
less, some building experts still believe that the predicted outputs
of the BPS tools can be used, without considering the uncertainty
sources as undeniably accurate decision making information for
solving real problems. This is partly because the increased compu-
tational burdens of the BPS tools for the uncertainty propagation
act as a significant obstacle to adopting the stochastic approach,
considering the limited time and budget in reality.

Previous studies [4–7] have proposed surrogate models for alle-
viating these computational burdens in the engineering decision
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Fig. 1. Target building (left) and EnergyPlus displayed in OpenStudio (right).

making process. The Gaussian Process Emulator (GPE) and Poly-
nomial Chaos Expansion (PCE) in the surrogate models have been
most widely used and continuously developed in applied math-
ematical and statistical communities [4]. The GPE and PCE have

also been used for drawing meaningful and trustworthy proba-
bilistic predictions considering expensive natures of complex BPS
tools (e.g. EnergyPlus) in the building simulation domain. The abil-
ities of GPE and PCE for reliable performance assessments under

Table 1
Calibrated unknown inputs (N: Normal distribution, T: Triangular distribution, D: Definite value).

Classification Descriptions Calibrated input values

Construction materials

x1 Concrete Density (kg/m3) N[2247.82, 140.6]
x2  Specific heat (J/kg-K) N[937.28, 75.3]
x3  Conductivity (W/m-K) N[1.4958, 0.24]
x4

Mortar
Density (kg/m3) N[1805.25, 105.9]

x5  Specific heat (J/kg-K) N[856,91]
x6  Conductivity (W/m-K) N[0.914, 0.34]
x7

Concrete block
Density (kg/m3) N[1925,189]

x8  Specific heat (J/kg-K) N[840,90]
x9  Conductivity (W/m-K) N[0.922, 0.24]
x10

Stone
Density (kg/m3) N[2545,323]

x11  Specific heat (J/kg-K) N[829,162]
x12  Conductivity (W/m-K) N[2.536, 0.86]
x13

Insulation
Density (kg/m3) N[38,27]

x14  Specific heat (J/kg-K) N[1072,298]
x15  Conductivity (W/m-K) N[0.0412, 0.01]
x16

Waterproof Asphalt
Density (kg/m3) N[2146,266]

x17  Specific heat (J/kg-K) N[1232,431]
x18  Conductivity (W/m-K) N[1.050, 0.31]
x19

Board
Density (kg/m3) N[709.68, 287.1]

x20  Specific heat (J/kg-K) N[1561.32, 559.4]
x21  Conductivity (W/m-K) N[0.191, 0.15]
x22

Window #1
U-factor (W/m2-K) N[3.2881, 0.31]

x23  SHGC (dimensionless) N[0.4306, 0.04]
x24

Window #2
U-factor (W/m2-K) N[5.657, 0.57]

x25  SHGC (dimensionless) N[0.765, 0.08]
x26  Infiltration Air Change per Hour (1/h) N[0.3279, 0.01]

Indoor  loads
x27 Light Fraction internal gain N[0.8322, 0.09]
x28  Equipment Fraction internal gain N[0.7218, 0.05]

HVAC

x29
Supply fan

Fan Efficiency N[0.7, 0.07]
x30  Pressure Rise (Pa) N[598.51, 4.99]
x31  Motor Efficiency T[0.5, 0.9, 0.95]
x32

Return fan
Fan Efficiency N[0.7, 0.07]

x33  Pressure Rise (Pa) N[600.28, 5.01]
x34 Motor Efficiency T[0.5, 0.9, 0.95]

Pump

x35
Chilled water pump

Rated Pump Head (Pa) N[19951.09, 386.39]
x36  Motor Efficiency T[0.5, 0.9, 0.95]
x37

Condenser pump
Rated Pump Head (Pa) N[20031.04, 384.04]

x38  Motor Efficiency T[0.5, 0.9, 0.95]
x39

Hot  water pump
Rated Pump Head (Pa) T[170000,180000, 190000]

x40  Motor Efficiency T[0.5, 0.9, 0.95]
Plant x41 Absorption

Chiller/Heater #1
Fuel Input to Heating Output Ratio N[1.5, 0.15]

x42  Fuel Input to Cooling Output Ratio N[0.873, 0.0624]
x43 Absorption

Chiller/Heater #1
Fuel Input to Heating Output Ratio N[1.5, 0.15]

x44  Fuel Input to Cooling Output Ratio N[0.980, 0.0937]

Future climate data
x45

SRA1B scenario
Prediction error D[1.0]

x46  Spatial downscaling error D[1.0]
x47  Temporal downscaling error D[1.0]
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