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a  b  s  t  r  a  c  t

This  study  presents  a  class  of fractional  order  models  for system  identification  of  thermal  dynamics
of  buildings.  Fractional  order  dynamics  has  been  found  to be  inherent  in  the  nature  of  heat  transfer
problems.  It  is  thus  instinctive  to  use  fractional  order  models  to describe  the overall  thermal  dynamics  of
a building.  Besides,  fractional  time  series  modeling  is known  by its  long  memory  effect  and capability  of
representing  high-order  complicated  models  in  lower-order  and  compact  forms.  The  reduction  of  model
parameters  can  then  relieve  the  computational  overhead  in  the  system  identification  procedure.  This  is
of  particular  significance  in  model-based  predictive  control  for building  energy  efficiency.  In particular,
a  fractional  order autoregressive  model  with  exogenous  input  (FARX)  is  formulated  and  a corresponding
parameter  estimation  using  least  squares  technique  is also provided.  Furthermore,  the  FARX  model  is
validated  using  simulation  data  from  a detailed  model  built  via  IES<VE>  software  and  compared  with  the
prediction  using  traditional  ARX  model.  It is found  that  the  FARX  model  can reduce  the  computational
time largely  while  retaining  the  prediction  accuracy.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Building energy simulation and modeling

The recognition of the large amount of energy consumption
attributed to the building sector [1,2] has lead to volumi-
nous studies for improving energy efficiency of buildings, and
eventually facilitating the realization of sustainable and energy-
efficient ‘Smart-Cities’ [3]. The potential of energy savings is found
approximately up to 30% by intelligent automation [4]. One accom-
plishment towards this end is the introduction of model-based
predictive control (MPC) on heating, ventilation, and air condition-
ing (HVAC) of buildings. By means of this, approximately 17–24%
energy savings can be realized with comparison to current industry
approach, i.e. rule-based control, according to experimental studies
[5–7]. Comparable performances are also manifested in simulations
for varied types, scales and scenarios of buildings, such as [8–14]
to name but a few. Noteworthy is that the implementation of MPC
relies on efficient and accurate prediction in the prescribed fore-
cast horizon [15,16]. This calls for a low-order model while of high
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accuracy in predicting building energy dynamics, because the com-
putational overhead of model complexity may lead to intractable
MPC  problems.

Thermal behavior modeling of buildings is of interest itself in
building energy community for providing key building indicators
such as energy demand and temperature. At present, there are over
hundreds of building energy programs for whole-building energy
simulation, such as TRNSYS [17], EnergyPlus [18] and IES<VE> [19]
and so on. A comparison of them can be found in [20]. The mod-
els built using these programs are detailed and complicated, often
referred to as white-box models, and hence unsuitable for MPC.
In this regard, recent years have witnessed the efforts spared in
selecting/developing alternative models and corresponding sys-
tem identification for MPC  [15,16,21]. The data-driven modeling
seems to be well-suited, such as state space model, autoregressive-
moving-average model with exogenous input (ARMAX) and its
variants. Correspondingly, their parameters are often estimated
using subspace system identification and least squares method
respectively. Still in the framework of autoregressive modeling,
multi-step instead of one-step ahead prediction error is minimized
to improve the forecast accuracy in the prediction horizon of MPC,
leading to the so-called MPC  relevant identification [22,15,23].
Applications and improvements of these methods and others
as well can be found in [24–27]. The aforementioned models
are referred to as black-box models, because no prior physical

http://dx.doi.org/10.1016/j.enbuild.2016.09.006
0378-7788/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

dx.doi.org/10.1016/j.enbuild.2016.09.006
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2016.09.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:l.chen.tj@gmail.com
mailto:basub@tcd.ie
mailto:david.mccabe@iesve.com
dx.doi.org/10.1016/j.enbuild.2016.09.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


382 L. Chen et al. / Energy and Buildings 133 (2016) 381–388

Nomenclature

˛i the ith fractional order on the output
 ̨ arbitrary fractional order

�(k) vectorized known parameters in the least squares
estimation

� vectorized unknown parameters to be identified
ˇp,j the jth fractional order on the pth input
D  fractional derivative operator
�(·) Gamma  function
�̂ estimated �
� integration parameter
ai, a′

i
coefficients corresponding to the output of the con-
tinuous and discrete fractional order model

bp,j, b′
p,j

coefficients corresponding to the pth input of the
continuous and discrete fractional order model

f(t) function of t
h sampling time interval
i, j indexes
J(�) objective function
k index of time instant of the FARX
L number of past values in approximating Grünwald-

Letnikov derivative
l non-negative integer
m positive integer
N number of samples used in identification
na number of fractional orders on the output
nb number of fractional orders on the input
nk input–output delay
nu number of input
p system input index
Qf free gain of the simulated building
Qh controlled gain of the simulated building
t time
Ta temperature of ambient air
Tz temperature of zone air
up system inputs, indexed by p
Up,j parameter accounting for the effect of past values of

the pth input
y system output
Yi parameter accounting for the effect of past outputs
ARFIMA autoregressive fractionally integrated moving aver-

age model
ARMAX autoregressive-moving-average model with exoge-

nous input
ARX autoregressive model with exogenous input
FARX fractional order autoregressive model with exoge-

nous input
FIT indicator of the fitness of identified model
HVAC heating, ventilation, and air conditioning
IES<VE> Virtual Environment by Integrated Environmental

Solutions Ltd.
MAE  mean absolute error
MaxAE maximum absolute error
MISO multi-input single-output
MPC  model-based predictive control
MSE  mean squared error

information of the building are required. However, in practice,
experimental data are not always available, and hence the white-
box model is needed to generate informative input/output data
for developing the black-box models, rendering a co-simulation
strategy necessary [28].

Simplification, i.e. model order reduction, appears compulsive
for implementing MPC; wherein it is also crucial to retain key
physics of the building energy system. This is why state space
representations are embraced by the community, as they can be
derived directly from the electrical analogies of buildings [29,30].
Partial physical information of the building can also be conve-
niently included in the modeling. On the other hand, ARMAX model
is often criticized for lack of physical interpretation, although in
cases it even has better performance [31]. In this regard, a physical-
based ARMAX model has been pursued in [32] and according to an
extensive measurement over 109 days, the prior physical informa-
tion can boost the modeling accuracy. Notwithstanding, it is still
arguable that the determination of model order and the the selec-
tion of state variables can be tricky and subjective in state-space
representation [33].

In other words, in extracting a simple black-box model required
for MPC, from the experimental data or from the corresponding
white-box modeling, it is essential to realize model-order reduc-
tion, e.g. through physical description and eigen-analysis [33,34].
At the same time, it is also important to preserve the physical funda-
mentals. To further explore these two aspects and hence facilitate
the use of MPC  in saving building energy, we herein present a
class of fractional order models for building energy systems. The
fractional order models found in literature are able to describe
the nature of heat transfer problems; besides, characteristics of
fractional time series modeling are suitable for building energy
systems, including its long memory effect and the capability of
expressing the model using a smaller number of parameters. These
features are detailed in the following from the standpoint of mod-
eling building thermal dynamics.

1.2. Fractional-order thermo-dynamics and fractional time series
modeling

Fractional calculus is a natural extension of calculus of integer
order to arbitrary order, with a history as long as the traditional
calculus [35]. However, it has only found wider application in engi-
neering in the past several decades, including the fields closely
related to the building energy systems, namely physics, systems
and control [36–39].

One of its successful applications is in thermodynamics to
describe heat transfer problems which obey diffusion phe-
nomenon. For example, heat conduction through a wall or a sphere
was shown analytically to be of a fractional order of 0.5, and a
fractional order model was  presented and validated using an exper-
imental setup [40]; beam heat process was found much more
precisely described also by using the fractional order models [41]
where the identified transfer function matched that obtained from
measurement data accurately for a wide range of frequencies. On a
system level, it was shown that a fractional order model of only a
few parameters is able to describe the responses of a large network
composed of hundreds of resistor and capacitors [42], and such
networks can be used as electrical analogies of thermal behavior
of buildings [29,25]. Therefore, fractional-order dynamics appears
inherent for building thermal dynamics from a physical perspec-
tive.

In time series analysis, the autoregressive integrated moving-
average model [43] was  generalized by permitting fractional
differencing, resulting in the so-called autoregressive fractionally
integrated moving average (ARFIMA) models [44,45]. This family
of models was  intended to properly account for the dependence
between distant observations of series particularly arising in eco-
nomics, and has been widely used in economic forecasting [46], e.g.
for electricity price prediction [47]. Correspondingly, techniques
were developed for parameter estimation of ARFIMA models [48].
Note that in the ARFIMA model, exogenous input is not considered.
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