Accepted Manuscript

Title: Numerical Modeling of Ventilated Wall Cavities with

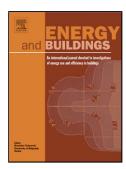
Spray Evaporative Cooling System

Authors: Alaa Alaidroos PhD, LEED AP BD+C Moncef

Krarti PhD, PE, LEED AP

PII: S0378-7788(16)30742-3

DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2016.08.046


Reference: ENB 6945

To appear in: *ENB*

Received date: 1-1-2016 Revised date: 18-7-2016 Accepted date: 12-8-2016

Please cite this article as: Alaa Alaidroos, Moncef Krarti, Numerical Modeling of Ventilated Wall Cavities with Spray Evaporative Cooling System, Energy and Buildings http://dx.doi.org/10.1016/j.enbuild.2016.08.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical Modeling of Ventilated Wall Cavities with Spray Evaporative Cooling System

Alaa Alaidroos, PhD, LEED AP BD+C Moncef Krarti, PhD, PE, LEED AP

Civil, Environmental, and Architectural Engineering Department, University of Colorado at Boulder

Nomenclature

а	radius of the droplet (m)	Sc	Schmidt number
A_g	cavity aspect ratio	Та	Temperature of air inside the control volume (°C)
Acav	cross section area of the cavity (m ²)	Ti	Temperature of induced air (°C)
Ain	area of wind catcher inlet (m ²)	T _{o1}	Temperature of outdoor surface of the outer cavity wall (°C)
Aout	area of the cavity outlet (m ²)	T _{o2}	Temperature of the indoor surface of the outer cavity wall (°C)
c	tangent of the half-angle of spray	T _{i2}	Temperature of the outside surface of the inner cavity wall (°C)
C_D	drag coefficient	T _{i1}	Temperature of the inside surface of the inner cavity wall (°C)
c_{pl}	specific heat of water (kJ/kg.K)	T _c	Temperature of air inside the ventilated cavity (°C)
c_{pa}	specific heat of air (kJ/kg.K)	Tin	indoor temperature (°C)
d	ventilated cavity depth (m)	$T_{\rm sol}$	Sol-Air temperature (°C)
$D_{\scriptscriptstyle AB}$	mass diffusivity (m ² /s)	T _{Sol-Air}	Sol-Air temperature (°C)
Dh	hydraulic diameter of the ventilated cavity (m)	Toutdoor	outdoor air temperature (°C)
e	absolute roughness of cavity wall surface	V_a	induced air velocity (m/s)
FN	Flow Number	V_l	droplet velocity (m/s)
g	gravitational acceleration	V_{l0}	initial velocity of the droplet (m/s)

Download English Version:

https://daneshyari.com/en/article/4919601

Download Persian Version:

https://daneshyari.com/article/4919601

<u>Daneshyari.com</u>