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a b s t r a c t

This paper analyses the dynamic behavior of Euler-Bernoulli beams on elastic foundations of the Winkler
type submitted to moving loads. In particular, the usefulness of passive frictional damping devices, that
present ecological and economic advantages with respect to viscous ones, in the context of minimizing
the consequences of resonance phenomena is studied.
A program in Matlab environment based on the finite element method (FEM) that simulates the

dynamic behavior of the beam, foundation and frictional damping devices driven by a moving load, is
developed and used to study the effect of the frictional dissipation on the values of the critical velocities
and dynamic amplifications. The time integration of the global equations of the motion is performed
using the nonsmooth contact dynamics method (NSCD) with persistent contact, especially conceived
for friction problems which are governed by a nonsmooth constitutive law.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the dynamic behavior of Euler-Bernoulli beams on
elastic foundations of the Winkler type submitted to moving loads
is analyzed. The usefulness and efficiency of passive frictional
damping devices for the minimization of resonance phenomena
is studied. The control of excessive vibrations is of special interest
in the design and management of high-speed rail tracks. It is well
know that for some velocity ranges the oscillation amplitudes may
become very large, thus endangering the structural and passen-
gers’ safety. This amplification of the oscillations occurs usually
for very high speeds. However, records of high dynamic amplifica-
tions in rail tracks exist for ordinary velocities (v ¼ 202 km/h) due
to the presence of soft foundation soils [1]. The most common solu-
tion for the control of excessive vibrations in structures has been
the use of viscous dampers. In viscous dampers the damping force
is proportional to the velocity of deformation while in frictional
damping devices the damping force varies between a minimum
and a maximum value depending on the sign of the velocity of
deformation. Frictional damping presents ecological and economic
advantages (cost and maintenance) with respect to viscous one
[2,3] and has been successfully used in many civil and mechanical
engineering applications, either in bladed disks [4], rotors [5],
cables [6] or train suspension systems [7].

The dynamics of beams subjected to moving loads has been
investigated over the years by several authors. From the initial ana-
lytical studies, it is worth mentioning the works by Krylov [8],
Timoshenko [9], Inglis [10], Lowan [11] and Frýba [12]. The static
problem of a beam on a linear elastic foundation was addressed
by Hetenyi [13]. Later, Timoshenko et al. [14] analytically solved
the free vibration problem of a beam on an elastic foundation. Var-
ious linear [15–19] and nonlinear [20–24] foundation models have
been used and the response of beams resting on elastic foundations
subjected to a moving mass or a moving oscillator has also been
investigated [25–32]. The finite element method was also used to
study the behavior of beams on elastic foundations subjected to
moving loads [33–37].

When the velocity of the moving force becomes equal to the
minimum phase velocity of the waves in the beam-foundation sys-
tem a resonance phenomenon, characterized by an amplification of
the beam’s transverse displacements, occurs. This critical velocity
in an infinite Euler-Bernoulli beam on a Winkler foundation is [12]

vcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4kEI

ðqAÞ2
4

s
; ð1Þ

where EI and qA are, respectively, the beam’s bending stiffness and
mass per unit length and k is the stiffness of the foundation. Dim-
itrovová and Rodrigues [38] determined analytically the critical
velocities which cause resonance of finite beams under moving
loads on uniform or non-uniform linear elastic Winkler foundations,
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with or without viscous damping. Using the FEM, Castro Jorge et al.
[39,40] generalized the analyses in [38] for more realistic (nonlin-
ear) foundation behaviors.

The objective of this paper is to study the effect of the frictional
dissipation on the values of the critical velocities of the moving
load and on the displacement and bending moment dynamic
amplifications. Therefore, a program in Matlab environment based
on the finite element method (FEM) that simulates the dynamic
behavior of the beam, foundation and frictional damping devices
driven by a moving load, was developed. In Section 2 the finite ele-
ment method is formulated and in Section 3 the nonsmooth con-
tact dynamics method (NSCD) [41–43], used in the time
integration of the global equations of the motion, is presented. In
Section 4 the results of the numerical simulations, namely the
effect of the frictional dissipation on the values of the critical veloc-
ities and dynamic amplifications, are presented. Different solutions
of passive frictional damping are compared and the problem of the
optimization of the frictional force is also addressed. Finally, in Sec-
tion 5 the main conclusions of this study are presented.

2. Finite element formulation

We consider an Euler-Bernoulli beam of length L, cross section
area A and density q on a linear (visco)elastic foundation of the
Winkler type in parallel with a set of discrete Coulomb type sup-
ports (frictional damping devices), subjected to a moving load with
constant velocity v and magnitude F (Fig. 1). Different support con-
ditions may be considered at the extremities of the beam as repre-
sented in Fig. 1. The Coulomb type supports are schematically
represented in Fig. 2 and are designed in order to damp the vibra-
tions of the beam.

The continuum system is governed by the partial differential
inclusion

qA €wðx; tÞ þ EIw
0000 ðx; tÞ þ kwðx; tÞ

2 �qgAþ Fdðx� vtÞ þ
Xnd
i¼1

Rð _wðxi; tÞÞdðx� xiÞ; ð2Þ

where wðx; tÞ denotes the transverse displacement at abcissa x in

instant t; _ð Þ and ð Þ0 denote first order partial derivatives with
respect to t and to x, respectively, and dð Þ is the Dirac delta ‘‘func-
tion”. Each one of the Coulomb frictional damping devices located at
abcissa xi applies a concentrated force R on the beam that is related
to the velocity of the beam’s cross section at the device location by
the inclusion

RðtÞ 2 �FuSignð _wðxi; tÞÞ; ð3Þ
where Fu is the maximum frictional force of the device and the
multi-application SignðzÞ is defined by

SignðzÞ ¼
�1; z < 0
½�1;þ1�; z ¼ 0
þ1; z > 0

8><>: : ð4Þ

Inclusion (3), schematically represented in Fig. 3, corresponds
to Coulomb’s friction law: (a) when the velocity of the beam’s cross
section above the device is zero ( _w ¼ 0), the absolute value of the
force applied by the device is smaller than the maximum frictional
force Fu, (b) when _w– 0, the force applied by the device on the
beam has magnitude Fu and is opposed to the motion. The maxi-
mum frictional force developed at the device is given by

Fu ¼ nsFs with Fs ¼ lFn; ð5Þ
where ns is the number of contact sliding surfaces bolted together in
the frictional device, Fs is the maximum frictional force developed
at each surface, l is the friction coefficient and Fn is the bolt force.
In Fig. 2 a frictional damping device with ns ¼ 4 is schematically
represented.

Inclusion (3) is equivalent to

R ¼ proj½�Fu ;þFu �ðR� c _wÞ ð6Þ
where the projection operator is defined by

proj½a;b�ðzÞ ¼
a; z < a

z; z 2 ½a; b�
b; z > b

8><>: ; ð7Þ

Fig. 1. Euler-Bernoulli beam on a (visco)elastic foundation of the Winkler type in
parallel with a set of discrete Coulomb type supports.

Fig. 2. Schematic representation of a frictional damping device with four bolted
sliding surfaces (ns ¼ 4). The existence of ovalized holes allows the relative sliding
of the contacting surfaces and the development of a frictional force.

Fig. 3. Graph of the frictional damping device constitutive law. The two dashed
lines separate the regions of different behavior in space R� _w: upward sliding
( _w > 0), no sliding ( _w ¼ 0) and downward sliding ( _w < 0).

212 R. Toscano Corrêa et al. / Engineering Structures 152 (2017) 211–225



Download English Version:

https://daneshyari.com/en/article/4919691

Download Persian Version:

https://daneshyari.com/article/4919691

Daneshyari.com

https://daneshyari.com/en/article/4919691
https://daneshyari.com/article/4919691
https://daneshyari.com

