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a b s t r a c t

In this paper, non-linear elastic pre-buckling and in-plane buckling analysis for a circular shallow con-
crete arch subjected to a uniformly distributed load and time-varying uniform temperature field is per-
formed. Transient thermal strain and basic creep strain are considered, the latter modelled using a
fractional derivative creep law, to investigate the coupling effects of time, temperature and geometric
non-linearity on mechanical behaviour and stability boundaries. The first correspondence principle is
invoked allowing the problem to be treated elastically and statically, with the non-linear equilibrium
equations derived using the principle of virtual work. Numerical solutions to the variable order fractional
derivatives are obtained through a finite-difference based discretisation scheme. Results show that the
coupling effect between transient thermal strain and geometric non-linearity is significant as it influ-
ences pre-buckling behaviour and reduces buckling strength. Basic creep strain is less influential, causing
a slight enhancement of the effects of transient thermal strain.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As linear analyses of shallow arches lead to an over-estimation
of anti-symmetric bifurcation and symmetric snap-through
buckling loads, caused by geometric non-linearity, non-linear
methods are required for their analysis. Due to the common
application of shallow arches in civil engineering, coupling effects
of this inherent geometric non-linearity and additional complexi-
ties, including temperature changes and viscoelasticity, require
research attention.

The effects of uniform thermal loading on the behaviour and
in-plane elastic stability of shallow steel arches were investigated
[1–3]. Elevated temperatures induce compressive stresses in
arches due to end restrained thermal expansion and cause upward
deflections. These thermal induced stresses and displacements are
enhanced in shallow arches due to geometric non-linearity. Addi-
tionally, uniform temperature loading may cause anti-symmetric
bifurcation buckling or symmetric limit instability failure. When
shallow steel arches are subjected to combined mechanical and
uniform temperature loading, additional axial compressive forces
are generated and the radial deflections are reduced [4–8]. Further-
more, the critical in-plane buckling loads increase with tempera-
ture. Pi and Bradford [9] studied the thermoelastic stability of

shallow steel circular arches subjected to thermal gradients. The
authors discovered that arches may experience snap-through or
bifurcation buckling when subjected to a thermal gradient due to
increasing bending and axial compression caused by curvature
changes and axial expansion respectively. Furthermore, it was
found that anti-symmetric buckling is the dominant case and sym-
metric buckling can only occur for slender shallow arches. Cai et al.
[10] investigated the stability of shallow steel parabolic arches
subjected to temperature gradients and mechanical loading.
Results showed that critical buckling loads increased with an
increasing uniform temperature field. Conversely, the critical loads
decreased with an increasing temperature gradient. However, less
work has been completed on the behaviour and stability of con-
crete arches at elevated temperatures. Bouras and Vrcelj [11] con-
ducted a pre-buckling and stability analysis of shallow circular
concrete arches subjected to combined mechanical and thermal
loading in order to analyse the effect of transient thermal strain
(TTS). It was found that when considering TTS, axial compressive
force increased with temperature and the arch deflected down-
wards. Moreover, TTS significantly magnified the reduction in
buckling strength of concrete arches at elevated temperatures.
Basic creep strain was not considered.

Concrete and concrete-filled steel tubular (CFST) arches deform
in time due the viscoelastic effects of creep and shrinkage. These
quasi-static changes in the non-linear equilibrium configuration
may induce loss of stability under the sustained load, despite
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initially being deemed as stable. The phenomenon of creep buck-
ling has received research attention for both concrete [12] and
CFST [13–16] arches. Axial force, bending moment and displace-
ments increase with time due to creep and shrinkage. Subse-
quently, the creep strain is magnified due to the increased stress
levels, causing the deformations and stresses to continually grow
and reach an unstable equilibrium configuration at which buckling
is possible [12]. The significance of this behaviour is magnified in
shallow arches due to geometric non-linearities. As the creep beha-
viour of concrete is sensitive to temperature variations [17], typical
daily and seasonal fluctuations should be considered in long-term
analyses of concrete and CFST structures. Luo et al. [18] investi-
gated the time-dependent behaviour of a crown-pinned circular
CFST arch under constant temperature change and found that the
coupling between creep, shrinkage and temperature significantly
influenced the long-term deformations and internal forces. Wang
et al. [19] studied the effect of temperature fluctuations on the
creep behaviour of a CFST arch bridge. Using the micro-prestress
solidification theory [20] and the age-adjusted effective modulus
method, they found that creep deformations and stresses at the
arch mid-span increased by 9% and 7–18% respectively, when tem-
perature changes were considered. These findings emphasize the
importance of temperature-time coupling in arch structures. How-
ever, these two studies were restricted to low temperature varia-
tions (not exceeding 100 �C) and not extended to analyse stability.

Despite not accurately reflecting the behaviour of real materials
[21], viscoelastic models have been widely adopted for the consti-
tutive relation of materials exhibiting time-dependent properties.
The inaccuracy is due to the linear differential stress-strain equa-
tion being of integer order. To overcome this, viscoelastic chains
are constructed which consist of a multitude of viscoelastic units
placed in series or parallel. However, as complexities arise due
to the myriads of material parameters to be characterised [22],
intensive numerical simulations and comprehensive experimental
data sets are required. Hence, the practicality of employing vis-
coelastic chains in both analytical and numerical investigations
is diminished. The inherent disadvantages associated with vis-
coelastic models are overcome using fractional calculus, which is
a branch of mathematical analysis concerned with performing
integration or differentiation to a degree of real value [23–25].
Despite the formulation of fractional calculus in the 17th century,
the most significant developments in engineering and scientific
applications have been found only in the last 100 years [23]. With
fractional calculus, the spring-dashpot models of viscoelasticity
may now be generalised by replacing the integer order of deriva-
tive in the constitutive stress-strain equation with a real order.
Fractional viscoelastic models, such as the fractional Kelvin-
Voigt, fractional Maxwell and fractional Zener, have proven to be
robust descriptors of material behaviour [26], as experimental data
can be accurately reflected with the use of a minimal number of
material parameters. Papoulia et al. [27] proved that the models
of fractional viscoelasticity are obtained when the number of units
in a generalised viscoelastic chain approach infinity. Additional
applications of fractional viscoelasticity to model the dynamic
behaviour of concrete includes the work of Barpi and Valente
[28], who combined a micro-mechanical model and fractional vis-
coelastic element to investigate crack propagation in concrete, and
Katicha and Flintsch [29] who employed fractional viscoelastic
models to characterize the time-dependent properties of asphalt
concrete. More recently, Bouras et al. [30] developed a fractional
calculus based viscoelastic model for high temperature creep in
concrete.

In the present study, an elastic in-plane buckling analysis of a
shallow plain concrete arch subjected to a uniformly distributed
radial load and time-varying uniform temperature field, for both
pinned and fixed ends, is undertaken. The arch is assumed to be

mechanically pre-loaded, so TTS will manifest when the concrete
arch is heated. Basic creep strain is considered and modelled using
the aforementioned variable order fractional derivative creep law.
The influence of both transient thermal strain and basic creep
strain on the behaviour and stability boundaries of shallow con-
crete arches under short-term temperature increases, are the focus
of the investigation. Although creep strain is often neglected in
studies of concrete under transient temperature increases such
as those caused by fire, it warrants investigation in shallow arches
due to their geometric non-linearities and increasing temperature-
dependent stresses and deflections.

2. Material model

The total strain � in pre-loaded concrete members subjected to
an elevating temperature, a function of time t, stress r ðtÞ and tem-
perature T ðtÞ, is defined as

� ðr; t; TðtÞ Þ ¼ e ðrðtÞ; TðtÞ Þ þ ecr ðrðtÞ; TðtÞ; tÞ þ eth ðTðtÞ Þ
þ etr ðrðtÞ; TðtÞ Þ; ð1Þ

where e is the instantaneous mechanical strain, ecr is the basic creep
strain, eth is the thermal strain and etr denotes TTS. Thermal strain is
known as

eth ¼ aDT; ð2Þ
with a representing the coefficient of thermal expansion, assumed
constant at 8� 10�6=

�C, and DT ¼ T � T0, where T0 is the initial
temperature. Considering only elastic behaviour, the instantaneous
mechanical strain can be expressed as

eel ¼ r
EðTÞ ; ð3Þ

where EðTÞ is the temperature dependent elastic modulus which
will be modelled using the Eurocode 2 formulation [31]. The Ander-
berg model of TTS [32] is adopted and defined as

etr ¼ r
f 0c
baDT: ð4Þ

where f 0c denotes the cold compressive strength and the constant
b ¼ 2:35. This model has been employed as the TTS is linear propor-
tional to stress which simplifies the analytical analysis, and due to
its common application in fire investigations. Adopting other TTS
models does not qualitatively change behaviour however may
cause quantitative differences in results, see [11].

A rheological model consisting of a fractional dashpot (spring-
pot) unit will be employed to model the basic creep strain which
is governed by the following variable order fractional derivative
equation, see [30],

Da ðTÞ
t ecr ¼ r

g ðTÞ : ð5Þ

In Eq. (5), Da ðTÞ
t is the operator of the fractional derivative of variable

order a ðTÞwith respect to time t, satisfying 0 < a < 1 and t > 0, and
g ðTÞ is the temperature dependent dynamic viscosity. These param-
eters are available in Appendix A.1. Two definitions of the variable-
order fractional derivative are adopted and subsequently examined;
the Caputo fractional derivative of a function f ðtÞ known as

Da ðtÞ
t f ðtÞ ¼ 1

Cð1� aðtÞÞ
Z t

0

D1 f ðsÞ
ðt � sÞaðtÞ

ds; ð6Þ

and the memory of order definition

Da ðtÞ
t f ðtÞ ¼

Z t

0

D1 f ðsÞ
C½1� aðt � sÞ�ðt � sÞaðt�sÞ

ds; ð7Þ

414 Y. Bouras, Z. Vrcelj / Engineering Structures 152 (2017) 413–423



Download English Version:

https://daneshyari.com/en/article/4919705

Download Persian Version:

https://daneshyari.com/article/4919705

Daneshyari.com

https://daneshyari.com/en/article/4919705
https://daneshyari.com/article/4919705
https://daneshyari.com

