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a b s t r a c t

This paper deals with the formulation of cruciform finite elements that model 2D steel joints for frame
analysis. Three different cases are contemplated: single rectangular panels suitable for internal joints
with beams of equal depth at both sides; trapezoidal panels for joints with beams of different depths
at both sides and inclined stiffeners; and double rectangular panels for the case of joints with beams
of different depths at both sides and with or without horizontal stiffeners in the panel zone.
The cruciform elements have 4 nodes with 3 degrees of freedom per node, and take into consideration,

in a consistent and complete way, the stiffness properties (components in Eurocode), including those of the
panel zone. The proposed elements allow modelling simple, rigid and semi-rigid connections. In addition,
they take into account all the internal forces that coincide at the joint, and the eccentricities of the inter-
nal forces coming from the beams and columns that meet at the joint. Numerical examples are solved
that compare the proposed approach with complete finite element models of sample frames. The results
validate the approach and demonstrate its advantages.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modern structural steel codes [1–4] include procedures and for-
mulations to define both the stiffness and resistance of the joints
(simple, rigid and semi-rigid) so they may be used for the global
analysis and design of the structure. However, semi-rigid design
has not received widespread attention due to its perceived com-
plexity and the lack of effective tools for frame analysis.

The most common approach to modelling connections in struc-
tural analysis programs is by means of zero length springs attached
to the end of the beams at both sides of the joint. In the USA, these
springs are characterised by different models such as the Frye-
Morris polynomial model [5], the modified exponential model [6]
or the three-parameter power model [7], among others. These
models accurately represent the characteristics of the connections
at both sides of the joint based on empirical statistical calibrations
with experimental test results, but do not take into account the
panel deformations due to shear and bending.

Early experimental studies [8] and more recent research [9–11]
have stressed the need for a correct definition of the panel zone

deformations under static conditions due to its influence on the
overall behaviour of the frame. An increase in frame drift due to
panel-zone shear deformation may render the frame unserviceable
and also affect its global stability. Modelling of the panel is also
important for the avoidance of local failure of the columns under
ultimate limit state conditions. Eurocode 3 (EC3) in its part 1.8
[3] takes into account the deformation of the panel zone as one
of the components of the joint. Furthermore, EC3 provides the
so-called component method, that allows determining strength
and stiffness characteristics of all the different parts of the joint,
including the panel zone. Under EC3 the different components
(springs) are assembled to form a resultant elastic-plastic spring
element that models the connections at each side of the joint to
be attached at the end of each beam.

Frame analysis is performed in computer programs using these
spring elements attached at the end of the beams to simulate the
behaviour of the connections [12]. Dhillop and O’Malley [13] used
semi-rigid generalised beam elements in the context of the LRFD
format for the interactive design of semi-rigid frames. Other zero
length semi-rigid spring elements have been proposed for analysis
of steel [14,15] and composite [16] frames.

The zero length end of beam spring model does not account for
either the real dimension of the joint or the interaction of all the
forces that intervene in the deformations of the panel zone.
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Consequently, EC3 introduces a transformation parameter, called b
that depends on the internal moments and shear forces acting on
the panel, and which affects both the stiffness and resistance of
the components (springs). Since these internal forces and moments
are not known in advance, the frame and joint analyses require an
iterative process [17].

A complete description of joint mechanical models is presented
in [18]. These models are composed of rigid bars and elastic-plastic
springs that are attached to the beams and columns for frame anal-
ysis. Although they consider the shear deformation of the panel
and the properties of the left and right connections they do not
include the axial and bending deformations of the column. In addi-
tion, they require a significant amount of work from the user to
define their properties and dimensions. Furthermore, the mechan-
ical models increase considerably the number of bars and degrees
of freedom of the frames, and may cause numerical instability in
the analysis due to the high stiffness of the rigid bars.

Recently, a combination of the finite element method and the
component method has been proposed for the characterization of
structural connections [19]. These models take into account in an
accurate manner the material properties, shear deformation,
extension and bending of the complete joint. However, they
become computationally expensive, particularly in the case of non-
linear analysis, and require special features to accommodate the
resulting joint properties with the rest of the structural elements,
beams and columns, that compose the frame. Also recently, a
component-based nodal finite element was also proposed that
was implemented in OpenSEES [20].

In this paper, component based cruciform 4-node joint finite
elements are introduced that take into account the actual size of
the joint, its deformation characteristics (components), including
those of the panel zone, local phenomena and all the internal forces
that concur at the joint. As a consequence, these elements avoid
the use of the transformation parameter, and the inherent iterative
process that it requires. Since the elements are attached to the
adjacent beams and columns, the eccentricities of the internal
forces coming from them are also taken into account.

The first cruciform element for single rectangular panels was
proposed in [17] and it was based on a flexibility method. Later,
a stiffness approach [21] was used for composite joints, as well
as steel joints with trapezoidal shear panels [22]. More recently a
different displacement based cruciform element has been intro-
duced for steel joints with beams of different depths and stiffened
double rectangular panels [23]. A more general and efficient stiff-
ness approach is proposed herein that relies on the superposition
of displacement modes and constraint conditions. This method is
applicable to the three possible 2D joint cases: rectangular, trape-
zoidal and double rectangular panels, respectively. The formula-
tion of the new element for single rectangular joint panels
(which corresponds to the case of internal joints with beams of
equal depth at both sides) is derived in Section 2. The formulation
for the case of trapezoidal panels (for joints with beams of different
depths at both sides and inclined stiffeners) is introduced in Sec-
tion 3, and the case of two rectangular panels (joints with beams
of unequal depths at both sides and with or without horizontal
stiffeners in the panel zone) is presented in Section 4. Section 5
contains numerical simulations that compare the proposed formu-
lation with complete finite element models of the frames. These
results validate the proposed approaches and set the stage for
the conclusions that follow in Section 6.

2. Formulation for single rectangular panels

A standard mechanical model that represents the behaviour of a
single rectangular panel joint, which corresponds to beams of
equal depth at both sides, is depicted in Fig. 1. This mechanical

model is composed of springs and rigid bars. The height of the joint
is represented by h and the width by hc; the sub indexes 1 and 2
signify the right and left sides of the joint, respectively. Also, the
sub indexes t and b stand for the top and bottom sides of the joint.
The symbols K and D stand for the spring stiffness and displace-
ments, respectively. The values of the panel rotational spring Kp

as well as the side springs K1t, K2t, K1b and K2b, and their respective
resistances are defined in Chapter 6 of EC3-Part 1.8 [3] for bolted
and welded joints. These values will determine whether the joint
is simple, rigid or semi-rigid. The variable /p represents the rota-
tion of the panel. The right and left rotations /1 and /2 are shared
with the right and left beams, respectively; and the same applies to
the moments M1 and M2. Similarly, the displacements dt and db,
and corresponding shear forces Vt and Vb are shared with the top
and bottom columns.

The mechanical model can be directly assembled to the adja-
cent beams and columns and used in a frame analysis. However,
since the bars are rigid, the axial and bending deformations of
the column are not included in this model. The axial deformation
is generally small, however, as reported in [24], the bending part
cannot be disregarded. In addition, as mentioned above, the direct
use of this mechanical model increases considerably the number of
bars and degrees of freedom of the frame model, and may cause
numerical instability and round-off errors during the analysis
due to the high stiffness of the bars.

These problems can be avoided by using the cruciform element
shown in Fig. 2 that will be formulated so that it will contain, in
addition to the deformation characteristics of the mechanical
model, the axial and bending properties of the column. Further-
more, this type of element avoids the use of rigid bars. The element
has 4 nodes (A, B, C and D) with three degrees of freedom (dof) per
node (see Fig. 2) represented by a vector r with elements r1 to r12.
The cruciform element has the same dimensions as the mechanical
model and will share the moments and forces (represented by the
vector F) with the contiguous elements (beams and columns) and
the corresponding nodal points.

In order to formulate the stiffness of the element a superposi-
tion of deformation modes is followed. For this purpose, the
degrees of freedom of the element are partitioned in three groups
as shown in Fig. 3. The first group (see Fig. 3a) considers the panel-
column displacements and rotations under vertical and shear
forces as well as bending deformations. Its behaviour can be mod-
elled as a beam-column element that incorporates the axial, shear
and bending deformations [25]. The parameters needed for defin-
ing the corresponding stiffness matrix are:

- The column-panel height h
- The column area Ac

- The column moment of inertia Ic
- The column shear area Av which can be obtained as follows

Av ¼ Kp=ðGhÞ ð1Þ

Fig. 1. Mechanical model for single rectangular panels.
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