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a b s t r a c t

This paper provides a companion study to a previous paper by the same author (Virgin, 2017). In that
paper, 3D printing was used to provide a hands-on experience for students of (linear) structural analysis
based on the lateral stiffness of plane frames. In this paper, a related set of structural plane frames is
investigated in terms of their natural frequencies, perhaps the fundamental feature in structural dynam-
ics. Again, a 3D printer is used to provide a variety of parameter variations, and the extent to which cer-
tain simplifying analytical assumptions are justified is assessed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rectangular, plane, portal frames offer compelling pedagogical
opportunities in the context of learning structural dynamics. Their
relatively simple geometric form allows a variety of comparative
studies to be made, over and above single structural members.
Additive manufacturing is an ideal mechanism for producing nom-
inally similar structures to within relatively high specifications,
and the widespread availability of 3D printers means that it is pos-
sible to incorporate an accessible practical aspect to otherwise the-
oretical studies in structural dynamics. Obtaining the natural
frequencies of plane frames is a relatively simple task, especially
for frames consisting of slender members, such that the behavior
is dominated by elastic flexure [2]. Analysis is especially simple
for frames undergoing sway motion - often the case for practical
geometries associated with buildings in which floors are relatively
stiff in comparison with columns, for example.

The analysis for free vibrations tends to be a little more involved
than for stiffness, since mass effects need to be considered. Fur-
thermore, in terms of modal analysis, the lowest few frequencies
may be important even in linear regimes. Part of the reason for this
is that under external excitation, any of the lowest modes can be
excited and dominate subsequent dynamic behavior, especially in
systems with relatively low damping. However, in terms of practi-
cal testing the extraction of frequencies is a standard procedure,
once a time series has been measured. We shall see that the vibra-

tional behavior of rectangular portal frames can be described in
terms of various parameter ratios, essentially relating the distribu-
tion of stiffness and mass between the beam and columns, and pro-
viding an accessible means of allowing a schematic parametric
study to be conducted.

Understanding the dynamic behavior of structures has also
proved to be useful in damage assessment [3] and finite element
model updating [4,5], and of course earthquake engineering is a
natural context for this type of structural dynamics [6].

1.1. Some basic modeling

A spring (of stiffness coefficient K) attached to a mass (M), is
modeled, via Newton’s second law, by a second-order ordinary dif-
ferential equation:

M€X þ KX ¼ 0; ð1Þ
where the overdot means differentiation with respect to time, i.e.,
_X � dX=dt, and given some non-trivial initial deflection Xð0Þ (away
from equilibrium at X ¼ 0) the mass will oscillate according to

XðtÞ ¼ Xð0Þ cosxnt ð2Þ
in which the key response characteristic is the natural frequency:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
: ð3Þ

This harmonic motion reflects the continual exchange of energy
between the potential energy stored in the spring ðV ¼ 1

2KX
2Þ and

kinetic energy associated with the moving mass ðT ¼ 1
2M

_X2Þ.
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This spring-mass system and its natural frequency are repre-
sentative of a wider class of structural system in which the stiff-
ness and mass properties are typically associated with elastic
deformation and distributed mass. Thus, simplistically, we see that
the stiffer a structure, the higher the frequency of vibration, and
the greater the mass, the lower the natural frequency. All mechan-
ical and structural systems possess some form of energy dissipa-
tion or damping, thus oscillations have a tendency to decay in
the absence of external excitation. However, in similarity with
many practical systems (including the experimental systems to
be described later) this damping will be relatively small, and will
not have any significant effect on natural frequencies.

Given a rectangular, planar, portal frame, it is instructive to
assess how natural frequencies depend on a range of parameters
including material properties, boundary conditions, and geometry.
It is the latter that will provide the primary focus of interest in this
paper. For this type of continuous system there are an infinite
number of natural frequencies, but it is often the case that they
can be modeled by a very much lower-order model, and sometimes
using a single-degree-of-freedom (SDOF) model. Consider a square
portal frame, in which each of the three members is made of the
same material and has the same length, as shown in Fig. 1(a). How-
ever, the cross-beam is much stiffer than the columns. The bottom
of each vertical member is fixed to a rigid base and the top ends
join the cross-beam with moment-transmitting joints. This system
can be modeled as a SDOF system with the lateral deflection X
completely describing the overall deflection of the system: pure
sidesway.

The simplified model can be developed using the well-known
concept of an equivalent (lumped) spring and mass. Details of this
approach can be found in a number of texts, for example [7], but
essentially use is made of equivalent potential and kinetic energies.
The deflected shape of the frame under consideration depends
entirely on the columns: there are many functions that can
describe their shape (independently of magnitude). For example,
the following polynomial for lateral deflection w satisfies the
boundary conditions of zero rotation at both ends of the structural
member (w0 ¼ 0 at x ¼ 0 and L) but allowing one end to translate
(sway) relative to the other [8]:

wðxÞ ¼ 1� 2x
L

� �3

� 3 1� 2x
L

� �
þ 2: ð4Þ

It is also well-established that for a beam-like structural component

the strain energy stored in flexure is V ¼ 1
2 EI

R L
0 ðw00Þ2dx, where

w ¼ wðxÞ is the deflected shape, and EI is the flexural rigidity, i.e.,
the product of Young’s modulus E and the second moment of area
I. Evaluating this expression using Eq. (4), and equating it with

the potential energy of a spring, we obtain an equivalent stiffness
Ke ¼ 12EI=L3 (for a single column).

Similarly, the effective mass associated with the sway motion of
a beam (column) can be obtained using the kinetic energy for the

continuous system T ¼ 1
2qA

R L
0
_w2dx ¼ 1

2m
R L
0
_w2dx, where q is the

density and m is the mass, both per unit length. We can then
equate this with the point-mass kinetic energy T ¼ 1

2Mev2 ¼
1
2Me

_X2, and again using Eq. (4) as the shape function we obtain
Me ¼ 0:37 mL. We shall see later that these values are associated
with the (1,1) elements in the beam stiffness and consistent mass
matrices. It is not surprising that only a portion of the total mass
contributes, given the fact that one end is not moving.

Thus, for a column vibrating with pure-sway motion as shown
in Fig. 1(a), we have a natural frequency xn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ke=Me

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12EI=0:37qAL4

q
¼ 5:69

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL4

q
, where m ¼ qA is the mass per

unit length. The coefficient is much lower than that for the (much
stiffer) clamped-clamped beam with no sway (22.37), which is
associated with a symmetric vibration mode [9]. Solving the gov-
erning partial differential equation [8], results in a lowest natural

frequency x1 ¼ 5:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL4

q
; the slight difference with the

lumped model results from Eq. (4) not exactly describing the shape
of the column during the motion.

In the context of a rectangular frame in pure sway, we thus have
columns that supply the sway stiffness and a rigid bar that supplies
the mass (in addition to a smaller amount of effective mass con-
tributed by the columns). For a rectangular portal frame we thus
have [8]

f 1 ¼ 1
2p

12RððEIÞcÞ
L3ðM þ 0:37RMcÞ

" #1=2

; ð5Þ

in which M is the total mass of the beam, and the subscript c refers
to the column. For frames made of the same material throughout
the Young’s modulus E and density q provide a simple square root
scaling, f / ffiffiffiffiffiffiffiffiffi

E=q
p

. We see that unless the mass of the columns is
negligible (relative to the mass of the beam) the natural frequency
depends in a non-simple way on the properties of the columns. But,
suppose the mass of the columns is very small compared to the
mass of the beam: M � RMc . Then we can more easily isolate the
effect of varying a single parameter. For example, with all other

things held equal, we have f / ðLÞ�3=2 for a changing column length.
We also see that the natural frequency is independent of the width
b (since both the stiffness and mass scale linearly with b and thus
cancel). This is a slightly counter-intuitive result but also applies

Fig. 1. Rectangular (portal) plane frames. (a) the pure sway case, (b) the more general case.
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