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a b s t r a c t

The ground structure method seeks to approximate Michell optimal solutions for real-world design prob-
lems requiring truss solutions. The single solution extracted from the ground structure is typically too
complex to realize directly in practice and is instead used to inform designer intuition about how the
structure behaves. Additionally, a post-processing step required to filter out unnecessary truss members
in the final design often leads to structures that no longer satisfy global equilibrium. Here, a maximum
filter is proposed that, in addition to guaranteeing structures that satisfy global equilibrium, leads to sev-
eral design perspectives for a single problem and allows for increased user control over the complexity of
the final design. Rather than applying a static filter in each optimization iteration, the maximum filter
employs an interval reducing method (e.g., bisection)to find the maximum allowable filter value that
can be imposed in a given optimization iteration such that the design space is reduced while preserving
global equilibrium and limiting local increases in the objective function. Minimization of potential energy
with Tikhonov regularization is adopted to solve the singular system of equilibrium equations resulting
from the filtered designs. In addition to reducing the order of the state problem, the maximum filter
reduces the order of the optimization problem to increase computational efficiency. Numerical examples
are presented to demonstrate the capabilities of the maximum filter, including a problem with multiple
load cases, and its use as an end-filter in the traditional plastic and nested elastic approaches of the
ground structure method.

� 2017 Published by Elsevier Ltd.

1. Introduction

Since Michell’s 1904 landmark paper [1], in which he proposed
criteria for minimum volume structures that equilibrate a set of
forces (see also [2]), much work has been devoted to designing
structures at ‘‘the limits of economy.” For instance, optimal frames
satisfying Michell’s criteria have been analytically derived for var-
ious beam structures by e.g., A.Chan [3] in the 1960s, H. Chan [4] in
the 1970s, and Lewiński, Zhou, and Rozvany [5,6] in the 1990s.
Since analytical solutions are difficult or impossible to obtain for
some practical design problems, others have turned to numerical
approximations to Michell solutions. For example, the ground
structure method, developed by Dorn et al. in 1964 [7], begins with
a dense truss network composed of a finite number of members
and uses numerical optimization to size the members and obtain
approximate Michell trusses. More recent implementations
demonstrate the efficiency of the plastic formulation of the ground

structure method for finding approximate minimum volume
trusses with bounded member stresses [8–12]. Although the plas-
tic formulation is extremely efficient (it can be posed as a linear
programming problem), it has limitations in extending to more
complex problems [13]. Thus, this work focuses on the elastic for-
mulation for volume constrained compliance minimization, which
has been shown to be equivalent to compliance constrained vol-
ume minimization up to a scaling [14] for linear problems.

Both the plastic and elastic formulations of the ground structure
method typically lead to highly complex geometries that are
impractical in practice. Somework has been done to tailor themeth-
ods to obtain more practical designs. For example, Tugilimana et al.
[15] introduced the concept of modularity into the formulation to
obtain trusses consistingofmultiple identical pieces that canbepre-
fabricated offsite. Prager [16], and more recently Asadpoure et al.
[17], introduced penalty terms in the objective function to reduce
the number or weight of connections in their designs. Ramos Jr.
and Paulino [18] recently introduced the so called discrete filter that
changes the ground structuremethod formaximumstiffness design
from a truss sizing optimization problem to a true topology
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optimization problem in which a zero lower bound can be imposed
and cleaner final designs can be obtained. The intermediate struc-
tures generated during the optimization are filtered by removing
‘‘unnecessary” members, while preserving global equilibrium and
limiting local increases in the objective.

This work presents a maximum filter, which leads to several
design perspectives for a single problem and allows user control
over the final design. Accordingly, the contributions of the present
work are as follows:

1. Adaptive filter: In contrast to the previous static filter [18], the
max filter is adaptive. The magnitude of the max filter varies
during the iterations in accordance with a user prescribed toler-
ance on the change in the objective, allowing for a broader
range of possible designs and easier control over the final topol-
ogy. Moreover, there is no need to set a specific value of the fil-
ter ‘‘a priori.”

2. Piecewise convexity: Rather than applying the filter in every iter-
ation, ‘‘piecewise convexity” is achieved by controllingwhen the
max filter is applied, again leading to easier control over the
final design.

3. Efficiency: In addition to reducing the size of the state equations,
the size of the optimization problem is reduced when the max
filter is applied, further addressing a major drawback of the
nested elastic approach: computational cost.

4. End-filter: The max filter is shown to work effectively as an end-
filter to guarantee designs obtained using the traditional plastic
and nested elastic formulations satisfy global equilibrium.

Equipped with these features, the max filter becomes an effec-
tive engineering tool that can provide multiple perspectives on a
given design problem and empower engineers and architects to
take creative risks.

The remainder of this paper is organized as follows: Section 2
discusses the nested elastic formulation in a general sense. Sec-
tion 3 provides the standard nested elastic formulation and the
modified version used in this work. In Section 4, the max filtering
scheme is detailed for use with the modified nested elastic formu-
lation and for use as an end-filter with the traditional plastic and
nested elastic formulations. Section 5 provides a brief review of
solving the singular system of equilibrium equations using mini-
mization of potential energy with Tikhonov regularization (PE-
TR), and demonstrates the benefits of the method with a simple
example. The use of a reduced order model (ROM) on both the
state problem and the optimization problem as well as the impli-
cations on computational efficiency are discussed in Section 6.
Aligned nodes and hanging members are addressed in Section 7,
and some numerical aspects of the implementation are addressed
in Section 8. In Section 9, three numerical examples are used to
demonstrate the capabilities of the max filter, ROM, and the appli-
cability of the max filter as an end-filter in the traditional plastic
and nested elastic formulations of the ground structure method.
Conclusions are presented in Section 11. Nomenclature used
throughout the paper can be found in Appendix A, some comments
on fully stressed designs in Appendix B, the max filter algorithm
flowchart in Appendix C, a derivation of compliance for discrete
optimal trusses discussed in the text in Appendix D, and details
on solving singular systems in Appendix E. The MATLAB imple-
mentation is included as electronic supplementary material and
a tutorial for using the code is provided in Appendix F.

2. On nested elastic formulations

It is widely known that the nested elastic formulation typically
requires a small positive lower bound on the member cross-

sectional areas to ensure that the problem remains well posed.
As a result, the nested elastic formulation of the ground structure
method becomes a truss-sizing problem in which all members
defined in the initial ground structure are present in the optimal
structure. Thus, the optimal solution contains many thin members.
Discrete designs from ground structures are typically obtained by
using the small positive lower bound on the design variables (or
another arbitrary threshold value) as a ‘‘post-processing filter” that
removes a given level of thin members once the sizing problem is
complete [14]. This method of obtaining the final topology at the
end of the sizing problem using an arbitrary threshold will be
referred to as a ‘‘cutoff” in the remainder of this manuscript.

A number of issues arise when using the nested elastic formu-
lation of the ground structure method for maximum stiffness
design with a lower bound on the design variables and a cutoff.
First, the final topology can depend largely on the value of the
small positive lower bound and cutoff. These values must be care-
fully selected: the lower bound must be small enough to prevent
non-optimal members from contributing stiffness, but large
enough that the stiffness matrix does not become ill-conditioned.
The cutoff should be small enough that critical structural elements
are not removed from the final topology, but not so small that thin
members remain in the final topology [19,14]. Second, when using
this approach, truss members are often removed using the cutoff
after the sizing problem is complete without regard for whether
the final topology satisfies global equilibrium. In fact, solutions
based on this approach often contain hanging members (i.e., mem-
bers that are not connected to the structure at one or both ends) or
internal mechanisms. Lastly, the value of the objective function is
based on the result of the sizing problem in which all truss mem-
bers from the initial ground structure are present, whereas the
final topology after applying the cutoff actually represents an
increased objective.

Fig. 1 shows three final topologies obtained for an 8� 4 rectan-
gular domain, clamped at one end, with a mid-height point load at
the other end (Fig. 1a). The results are based on the nested elastic
formulation with a small positive lower bound
(xmin

i ¼ 1:581� 10�12) and various cutoffs. All three designs are
obtained from a full-level ground structure based on a 9� 5 nodal

a b

c d

Fig. 1. Cantilever beam, clamped at one end with a mid-height point load at the
other end - the optimization is based on a 9� 5 nodal mesh and a full-level initial
ground structure (632 non-overlapping members): (a) initial ground structure and
boundary conditions; (b) final topology based on a 1:0� 10�7 cutoff, which contains
undesirable thin and hanging members; (c) final topology based on a 0.20 cutoff,
which leads to a mechanism; (d) final topology based on a 0.010 cutoff, which is
statically determinate. Note: Red indicates compression and blue indicates tension
based on the stress state at the end of the sizing problem. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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