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1. Introduction

The elastic lateral buckling of tapered I-section beams has been
the subject of many investigations, but perhaps two of the more
important are those of [1,2], which made theoretical and experi-
mental investigations of doubly symmetric beams with tapered
webs or flanges, and of mono-symmetric beams with tapered
flanges (Fig. 1a). The flange bending during lateral buckling was
analysed and used to establish the differential equilibrium equa-
tions for bending and torsion. Numerical solutions of these equa-
tions were obtained using the finite integral method [3], and
compared with experimental results. While the finite integral
method allowed faster convergence than the finite difference
method which used to be in more common use, it is now rarely
used.

Instead, tapered beams are now commonly analysed as a series
of uniform elements, for which finite element computer programs
[4,5] are widely available. An immediate problem with this
approach is its inaccuracy, with significantly more elements
required for tapered beam predictions of acceptable accuracy than
for uniform beams. In addition, the uniform element method leads
to conceptual difficulties with gross discontinuities occurring
between elements. Further, it is possible that this method may
converge on incorrect solutions. On the other hand, the use of
tapered elements will hasten convergence, remove discontinuities
between elements, and is expected to converge on accurate
solutions.

There is therefore a need to develop a finite element method for
tapered beams. Not only will such a method improve the ability to
produce accurate solutions for the elastic buckling of tapered
beams, it will also facilitate the analysis of the inelastic buckling
of steel beams, in which the progressive yielding across a section
and along a beam caused by the applied loads acting in conjunction

with residual stresses cause the beam to become non-uniform and
mono-symmetric. In the past, inelastic buckling has been analysed
by reducing the elastic moduli in the yielded regions and perform-
ing an elastic buckling analysis [6]. More recently, it has been sug-
gested [7–10] that a simple advanced method of determining the
design resistance of a beam that is subject to lateral buckling
may be developed by reducing the elastic moduli in accordance
with basic design strength formulations and performing an elastic
buckling analysis. While some analyses of this type have been
made [11–13], they have used uniform elements, with the draw-
backs discussed above. The development of a tapered beam finite
element method can easily allow for linear variations in the elastic
moduli along the element.

A further advantage of a tapered finite element is that it will
facilitate explorations aimed at optimising the design of beams
against lateral buckling [14] by varying the distribution of material
along the beam length.

The purpose of this paper is to provide an alternate method of
analysing the elastic lateral buckling of tapered beam-columns
by using the energy method [15] to develop a finite element
method [4] which can be applied to a wide range of loading and
restraint conditions. Such a method starts from a consideration
of the strain-deformation relationships and develops expressions
for the strain energy stored and the work done during buckling.
The following sections develop this alternate method.

It is conventional in member analysis to reduce the three-
dimensional member to a one-dimensional line by replacing the
member by a series of longitudinal fibres. The results of an analysis
of a typical fibre are integrated across the section to derive the
properties of a line which represents the aggregation of the fibres.
For uniform members, it is natural to assume that these fibres are
parallel to the centroidal and shear centre axes, but for tapered
members this assumption leads to fibres which intersect the edges
of the member’s flange and web plates. This problem can be
avoided by assuming [16,17] that the fibres form radial fans whose
inclinations vary linearly between the web or flange boundaries.
For mono-symmetric tapered members, this assumption leads to
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fibres that may intersect the distinct centroidal and shear centre
axes, as shown in Fig. 1b.

2. Mono-symmetric tapered beam-columns

2.1. Section properties [18,19]

The mono-symmetric beam-column cross-section shown in
Fig. 2 has bottom and top flange and web widths bb, bt, and bw
and thicknesses tb, tt, and tw, respectively. The flange and web
widths and thicknesses may be linearly tapered.

The areas and minor axis second moments of area are

Ab ¼ bbtb; At ¼ bttt ; Aw ¼ bwtw;

A ¼ Ab þ At þ Aw;

Ib ¼ b3
btb=12; It ¼ b3

t tt=12; Iy ¼ Ib þ It

ð1Þ

The beam-column has an arbitrary but convenient longitudinal
axis OZ which is the locus of the web mid-heights as shown in
Fig. 3, a perpendicular axis OY which coincides with the web
mid-thickness line, and an axis OX perpendicular to the plane
OYZ. (These axes allow the load and restraint positions to be
defined without any prior calculations of the centroid and shear
centre positions, and simplify both the continuity conditions
between adjacent elements and the boundary conditions.)

The positions of the centroid C and shear centre S are defined by
the Y distances from the OZ axis shown in Fig. 2

Yc ¼ bw

2
Ab � At

A
ð2Þ

Ys ¼ bw

2
Ib � It
Iy

ð3Þ

The major axis second moment of area is

Ix ¼
Z
A
ðY � YcÞ2dA ¼ Aby2b þ Aty2t þ AwY

2
c þ b3

wtw=12 ð4Þ

in which the centroidal coordinates yb, yt of the bottom and top
flanges are given by

yb ¼ bw=2� Yc

yt ¼ �bw=2� Yc
ð5Þ

The uniform torsion section constant is approximated by

J ¼ bbt3b þ btt3t þ bwt3w
� �

=3 ð6Þ

2.2. Element model

The tangent to the locus of centroids defines the axis z shown in
Fig. 3, and the perpendicular x, y axes are the principal axes of the
cross-section. The tangent to the locus of shear centres defines the
axis zs shown in Fig. 3, and the xs, ys axes are perpendicular to the
axis zs. The centroidal z and shear centre zs axes are inclined (at
small angles Yc0 and Ys0) to the OZ axis, as indicated in Fig. 3.

The typical element of the tapered beam-column is modelled as
being composed of tapered longitudinal fibres. The tangent to the
fibre through a general point P(X,Y) in a cross-section defines the
axis zp as shown in Fig. 3. The fibre is inclined (at angles X0and
Y0) to the Z axis, as shown for a web fibre in Fig. 3. The fibres at
the edges of the flanges and web coincide with these edges, and
the inclinations of the interior fibres are assumed to vary linearly
between those of the edges [16,17] according to

X0
b;t ¼ Xb;tb

0
b;t=bb;t ð7Þ

and

Y 0 ¼ Yb0
w=bw ð8Þ

2.3. Loading and restraints

Concentrated transverse and longitudinal loads QY (at YQY), QZ

(at YQZ), and moments MX may act at a section Z along the axis

Nomenclature

A area of cross-section
Ab,t,w areas of bottom and top flanges and web
bb,t,w widths of bottom and top flanges and web
[Bi,ou,0w] matrices for generalised in-plane and out-of-plane

strains
[Ci,ou,ow] matrices for in-plane and out-of-plane nodal deforma-

tions
[Di,ou,ow] in-plane and out-of-plane stiffness matrices
[Dw,fuw,fv] out-of-plane stability matrices
E,G Young’s and shear moduli of elasticity
[Go] global stability matrix
[goe] element stability matrix
Ib,t bottom and top flange second moments of area
Ix,y second moments of area about x, y axes
Ixw second moment of area of web
J uniform torsion section constant
[Ki,o] global in-plane and out-of-plane stiffness matrices
[kie,oe] element in-plane and out-of-plane stiffness matrices
L length of element or member
M bending moment stress resultant
MX moment
n number of elements per half span
N axial tension stress resultant
Qie,in equivalent and actual nodal actions
QY, qY concentrated and distributed loads parallel to Y axis

QZ, qZ concentrated and distributed loads parallel to Z axis
tb,t,w thicknesses of bottom and top flanges and web
[TieG,oeG] matrices for transforming element to global deforma-

tions
U,V,W displacements of O in X, Y, Z directions
Ui,o in-plane and out-of-plane strain energies
UP,VP,WP displacements of P in X, Y, Z directions
up, vp, wp deflections perpendicular to and along inclined fibre
W work
wp,P in-plane longitudinal deflections of inclined fibre
X,Y,Z global coordinates measured from O
x, y principal axis coordinates
xs, ys shear centre axis coordinates
Yc,s Y coordinates of centroid and shear centre
YQ,q Y coordinates of Q, q loads
YR, Yr Y coordinates of concentrated and distributed restraints
z, zp,s longitudinal axes from centroid, P, and shear centre
af,t,w ratios of minimum to maximum values of bf, tf, bw
{Di,o} global in-plane and out-of-plane nodal deformations
{die,oe} element in-plane and out-of-plane nodal deformations
ei,o in-plane and out-of-plane strains
{eou,ow} out-of-plane generalised strains
U rotation about Z axes
r normal stress
k elastic buckling load factor
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