Lateral buckling of tapered members

Nick Trahair*
School of Civil Engineering, The University of Sydney, NSW 2006, Australia

ARTICLE INFO

Article history:
Received 10 July 2017
Revised 16 August 2017
Accepted 16 August 2017

1. Introduction

The elastic lateral buckling of tapered I-section beams has been the subject of many investigations, but perhaps two of the more important are those of [1,2], which made theoretical and experimental investigations of doubly symmetric beams with tapered webs or flanges, and of mono-symmetric beams with tapered flanges (Fig. 1a). The flange bending during lateral buckling was analysed and used to establish the differential equilibrium equations for bending and torsion. Numerical solutions of these equations were obtained using the finite integral method [3], and compared with experimental results. While the finite integral method allowed faster convergence than the finite difference method which used to be in more common use, it is now rarely used.

Instead, tapered beams are now commonly analysed as a series of uniform elements, for which finite element computer programs [4,5] are widely available. An immediate problem with this approach is its inaccuracy, with significantly more elements required for tapered beam predictions of acceptable accuracy than for uniform beams. In addition, the uniform element method leads to conceptual difficulties with gross discontinuities occurring between elements. Further, it is possible that this method may converge on incorrect solutions. On the other hand, the use of tapered elements will hasten convergence, remove discontinuities between elements, and is expected to converge on accurate solutions.

There is therefore a need to develop a finite element method for tapered beams. Not only will such a method improve the ability to produce accurate solutions for the elastic buckling of tapered beams, it will also facilitate the analysis of the inelastic buckling of steel beams, in which the progressive yielding across a section and along a beam caused by the applied loads acting in conjunction

[^0]with residual stresses cause the beam to become non-uniform and mono-symmetric. In the past, inelastic buckling has been analysed by reducing the elastic moduli in the yielded regions and performing an elastic buckling analysis [6]. More recently, it has been suggested [7-10] that a simple advanced method of determining the design resistance of a beam that is subject to lateral buckling may be developed by reducing the elastic moduli in accordance with basic design strength formulations and performing an elastic buckling analysis. While some analyses of this type have been made [11-13], they have used uniform elements, with the drawbacks discussed above. The development of a tapered beam finite element method can easily allow for linear variations in the elastic moduli along the element.

A further advantage of a tapered finite element is that it will facilitate explorations aimed at optimising the design of beams against lateral buckling [14] by varying the distribution of material along the beam length.

The purpose of this paper is to provide an alternate method of analysing the elastic lateral buckling of tapered beam-columns by using the energy method [15] to develop a finite element method [4] which can be applied to a wide range of loading and restraint conditions. Such a method starts from a consideration of the strain-deformation relationships and develops expressions for the strain energy stored and the work done during buckling. The following sections develop this alternate method.

It is conventional in member analysis to reduce the threedimensional member to a one-dimensional line by replacing the member by a series of longitudinal fibres. The results of an analysis of a typical fibre are integrated across the section to derive the properties of a line which represents the aggregation of the fibres. For uniform members, it is natural to assume that these fibres are parallel to the centroidal and shear centre axes, but for tapered members this assumption leads to fibres which intersect the edges of the member's flange and web plates. This problem can be avoided by assuming [16,17] that the fibres form radial fans whose inclinations vary linearly between the web or flange boundaries. For mono-symmetric tapered members, this assumption leads to

Nomenclature

A area of cross-section
$A_{b, t, w} \quad$ areas of bottom and top flanges and web
$b_{b, t, w} \quad$ widths of bottom and top flanges and web
[$\left.B_{i, o u, o w}\right]$ matrices for generalised in-plane and out-of-plane strains
[$\left.C_{i, o u, o w}\right]$ matrices for in-plane and out-of-plane nodal deformations
[$D_{i, o u, o w}$] in-plane and out-of-plane stiffness matrices
[$\left.D_{w, f u w, f v}\right]$ out-of-plane stability matrices
E,G Young's and shear moduli of elasticity
[G_{o}] global stability matrix
[$\left.g_{o e}\right] \quad$ element stability matrix
$I_{b, t} \quad$ bottom and top flange second moments of area
$I_{x, y} \quad$ second moments of area about x, y axes
$I_{x w} \quad$ second moment of area of web
$J \quad$ uniform torsion section constant
[$\left.K_{i, o}\right] \quad$ global in-plane and out-of-plane stiffness matrices
[$k_{i e, o e}$] element in-plane and out-of-plane stiffness matrices
L length of element or member
$M \quad$ bending moment stress resultant
$M_{X} \quad$ moment
$n \quad$ number of elements per half span
$N \quad$ axial tension stress resultant
$Q_{i e, i n} \quad$ equivalent and actual nodal actions
$Q_{Y}, q_{Y} \quad$ concentrated and distributed loads parallel to Y axis

$\begin{aligned} & Q_{z,}, q_{z} \\ & t_{b, t, w} \\ & {\left[T_{i e G, o e G}\right]} \end{aligned}$	concentrated and distributed loads parallel to Z axis
	thicknesses of bottom and top flanges and web
	matrices for transforming element to global deformations
U,V,W	displacements of O in X, Y, Z directions
$U_{i, o}$	in-plane and out-of-plane strain energies
U_{P}, V_{P}, W_{P}	U_{P}, V_{P}, W_{P} displacements of P in X, Y, Z directions
u_{p}, v_{p}, w_{p} W	deflections perpendicular to and along inclined fibre work
$w_{p, P}$	in-plane longitudinal deflections of inclined fibre
X, Y, Z	global coordinates measured from 0
x, y	principal axis coordinates
$x_{\text {s }}, y_{s}$	shear centre axis coordinates
$Y_{C, S}$	Y coordinates of centroid and shear centre
$Y_{\text {Q }, ~}$	Y coordinates of Q q loads
Y_{R}, Y_{r}	Y coordinates of concentrated and distributed restraints
$z, z_{p, s}$	longitudinal axes from centroid, P , and shear centre
$\begin{aligned} & \alpha_{f, t, w} \\ & \left\{\Delta_{i, o}\right\} \end{aligned}$	ratios of minimum to maximum values of b_{f}, t_{f}, b_{w} global in-plane and out-of-plane nodal deformations
$\left\{\delta_{i e, o e}\right\}$	element in-plane and out-of-plane nodal deformations
$\varepsilon_{i, o}$	in-plane and out-of-plane strains
\{ $\varepsilon_{\text {ou,ow }}$ \}	out-of-plane generalised strains
Φ	rotation about Z axes
σ	normal stress
	elastic buckling load factor

fibres that may intersect the distinct centroidal and shear centre axes, as shown in Fig. 1b.

2. Mono-symmetric tapered beam-columns

2.1. Section properties [18,19]

The mono-symmetric beam-column cross-section shown in Fig. 2 has bottom and top flange and web widths b_{b}, b_{t}, and b_{w} and thicknesses t_{b}, t_{t}, and t_{w}, respectively. The flange and web widths and thicknesses may be linearly tapered.

The areas and minor axis second moments of area are
$A_{b}=b_{b} t_{b}, \quad A_{t}=b_{t} t_{t}, \quad A_{w}=b_{w} t_{w}$,
$A=A_{b}+A_{t}+A_{w}$,
$I_{b}=b_{b}^{3} t_{b} / 12, \quad I_{t}=b_{t}^{3} t_{t} / 12, \quad I_{y}=I_{b}+I_{t}$
The beam-column has an arbitrary but convenient longitudinal axis OZ which is the locus of the web mid-heights as shown in Fig. 3, a perpendicular axis OY which coincides with the web mid-thickness line, and an axis $O X$ perpendicular to the plane OYZ. (These axes allow the load and restraint positions to be defined without any prior calculations of the centroid and shear centre positions, and simplify both the continuity conditions between adjacent elements and the boundary conditions.)

The positions of the centroid C and shear centre S are defined by the Y distances from the OZ axis shown in Fig. 2
$Y_{c}=\frac{b_{w}}{2} \frac{A_{b}-A_{t}}{A}$
$Y_{s}=\frac{b_{w}}{2} \frac{I_{b}-I_{t}}{I_{y}}$
The major axis second moment of area is
$I_{x}=\int_{A}\left(Y-Y_{c}\right)^{2} d A=A_{b} y_{b}^{2}+A_{t} y_{t}^{2}+A_{w} Y_{c}^{2}+b_{w}^{3} t_{w} / 12$
in which the centroidal coordinates y_{b}, y_{t} of the bottom and top flanges are given by
$y_{b}=b_{w} / 2-Y_{c}$
$y_{t}=-b_{w} / 2-Y_{c}$
The uniform torsion section constant is approximated by
$J=\left(b_{b} t_{b}^{3}+b_{t} t_{t}^{3}+b_{w} t_{w}^{3}\right) / 3$

2.2. Element model

The tangent to the locus of centroids defines the axis z shown in Fig. 3, and the perpendicular x, y axes are the principal axes of the cross-section. The tangent to the locus of shear centres defines the axis z_{s} shown in Fig. 3, and the x_{s}, y_{s} axes are perpendicular to the axis z_{s}. The centroidal z and shear centre z_{s} axes are inclined (at small angles Y_{c}^{\prime} and Y_{s}^{\prime}) to the OZ axis, as indicated in Fig. 3.

The typical element of the tapered beam-column is modelled as being composed of tapered longitudinal fibres. The tangent to the fibre through a general point $\mathrm{P}(X, Y)$ in a cross-section defines the axis z_{p} as shown in Fig. 3. The fibre is inclined (at angles X^{\prime} and Y^{\prime}) to the Z axis, as shown for a web fibre in Fig. 3. The fibres at the edges of the flanges and web coincide with these edges, and the inclinations of the interior fibres are assumed to vary linearly between those of the edges $[16,17]$ according to
$X_{b, t}^{\prime}=X_{b, t} b_{b, t}^{\prime} / b_{b, t}$
and
$Y^{\prime}=Y b_{w}^{\prime} / b_{w}$

2.3. Loading and restraints

Concentrated transverse and longitudinal loads Q_{Y} (at $Y_{Q Y}$), Q_{Z} (at $Y_{Q Z}$), and moments M_{X} may act at a section Z along the axis

https://daneshyari.com/en/article/4919785

Download Persian Version:

https://daneshyari.com/article/4919785

Daneshyari.com

[^0]: * Adrress: 3 Yiremba Place, Forestville, NSW 2087, Australia.

 E-mail addresses: N.Trahair@civil.usyd.edu.au, Nicholas.Trahair@gmail.com

