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a b s t r a c t

This paper presents a general methodology for predicting the critical buckling loads of spherical shells
using a nondestructive test. For this purpose, the well known graphical method of predicting buckling
loads, i.e., the Southwell’s nondestructive method for columns is analytically extended to spherical shells
and a new formula is derived for the critical buckling load of uniformly compressed spherical shells.
Subsequently, finite element simulation and experimental work proved that the theory is also applicable
to spherical shells with an arbitrary axi-symmetrical loading as well. The results show that the technique
provides a useful estimate of the elastic buckling load provided care is taken in interpreting of the results.
The usefulness of the method lies in its generality, simplicity and in the fact that, it is non-destructive.
Moreover, it does not make any assumption regarding the number of buckling waves or the exact local-
ization of buckling.

Published by Elsevier Ltd.

1. Introduction

Due to the increasing use of shell type structures in space vehi-
cles, submarines, buildings and storage tanks, interest in the stabil-
ity of shells has accordingly increased by researchers and
practicing engineers. On the other hand, as the variety and the
quantity of shells increase, the determination of shell behavior
becomes more and more important. Because a hemispherical shell
is able to resist higher pure internal pressure loading than any
other geometrical vessel with the same wall thickness and radius,
the hemispherical shell is one of the important structural elements
in engineering applications (Fig. 1). It is also a major component of
pressure vessel construction. A spherical vessel is a very strong
structure and they have a smaller surface area per unit volume
than any other shape of the vessel.

In spherical shell structures, one of the most important things is
to determine the buckling load of these structures either experi-
mentally or theoretically. The modern design technique goes into
the model investigation, especially, for complicated structures as
shells. Since in most cases, the true behavior of the shell has not
been known or very difficult to know, the best thing is to make
some assumptions and then to verify these assumptions by means
of model tests. Accordingly, the determination of the buckling

loads of hemispherical shells either experimentally or theoretically
is very important.

Jones et al. [1] investigated the problem of a thin spherical
linearly-elastic shell, perfectly bonded to an infinite linearly-
elastic medium. A constant axisymmetric stress field is applied at
infinity in the elastic medium, and the displacement and stress
fields in the shell and elastic medium are evaluated by means of
harmonic potential functions. Nie et al. [2] derived an asymptotic
solution for nonlinear buckling of orthotropic shell on elastic foun-
dation. They performed an extensive parametric study for defor-
mation and buckling of such structures. Uchiyama and Yamada
[3] studied nonlinear buckling of elastic imperfect shallow spheri-
cal shells by mixed finite elements. They used nine-node shell ele-
ment and mixed formulation for stress resultant vectors then they
compared finite element results with fifty-two experiments on the
elastic buckling of clamped thin-walled shallow spherical shells
under external pressure. Dumir et al. [4] investigated axisymmetric
buckling of orthotropic shallow spherical cap with circular hole.
Analysis has been carried out for uniformly distributed load and
a ring load at the hole. Grünitz [5] examined the buckling strength
of clamped and hinged spherical caps under uniform pressure with
a circumferential weld depression by using the finite element
method. The results obtained show a significant decrease in
the buckling strength due to these imperfections depending on
the location of the weld. Xu [6] developed a non-linear
shear-deformation theory for the axisymmetric deformations of a
shallow spherical cap comprising of laminated cylindrically-
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orthotropic layers. He expressed the governing equations in terms
of the transverse displacement, stress function and rotation.
Numerical results on the buckling and post-buckling behavior of
spherical caps under uniformly-distributed loads were presented
for various boundary conditions, cap rises, base radius-to-
thickness ratios, numbers of layers and material properties. Dumir
et al. [7] presented axisymmetric buckling analysis for moderately
thick laminated shallow annular spherical cap under uniformly
distributed transverse load. In their study, buckling is considered
under quasi- static load. Annular spherical caps have been ana-
lyzed for clamped and simple supports with movable and immov-
able in-plane edge conditions and typical numerical solutions have
been compared with the classical lamination theory.

Zhang et al. [8] investigated the buckling of spherical shells sub-
jected to external pressure. They performed geometrically and
materially nonlinear buckling analysis of thin-walled stainless
steel spherical shells and compared the results with experimental
data. All test samples buckled within an elastic- plastic range.
According to their findings, the real load- carrying capacity of a
spherical shell can be obtained numerically from measured geo-
metric shape and average wall thickness, as well as from the
assumption of elastic- perfectly plastic material properties.

Karagiozova et al. [9] studied the deformation and snap-
through behavior of a thin-walled elastic spherical shell in the
form of a table tennis ball subjected to axial compression under

quasi-static and impact loading experimentally and numerically.
In this study, the researchers evaluated the influence of dynamic
effects on the compression process.

Gupta and Gupta [10] studied the different collapse modes of
metallic hemispherical domes which are resting on a flat plate
and are compressed with axial central point load and offset load.
They developed a finite element computational model for the
axisymmetric mode of collapse. In their proposed model the mate-
rial of the deforming dome has been idealized as rigid viscoplastic.
They used experimental results to validate the computational
model. Then, the effects of the different process parameters on
the deformation behavior of the shells have been presented and
discussed.

Yang et al. [11] investigated peripheral deformation and buck-
ling of stainless steel hemispherical shells compressed by a flat
plate. They performed an experimental investigation on stainless
steel hemispherical shells under axial compression. They used
eight kinds of shells with radius-to-thickness ratios that range
from 57.1 to 125 for their experimental study. They compressed
shells by a solid flat plate. Based on their experimental observa-
tions and the slope of load-deformation curves, the deformation
process of thin shells compressed between two plates can be
divided into four different stages: local flattening, axi-symmetric
inward dimpling, non-symmetric multiple lobes, and peripheral
deformation and buckling stage.

Nomenclature

S slope of w verses w=p line
u displacement of the shell element in x direction
v displacement of the shell element in y direction
w displacement of the shell element in z direction
U0 effect of initial imperfections
V shearing force in straight members
y deflection of straight member
a buckling coefficient to be determined experimentally
ex the unit elongation or strain in x- direction

ey the unit elongation or strain in y-direction
e1 the unit elongation of middle surface in x-direction
e2 the unit elongation of middle surface in y-direction
t Poisson’s ratio
vx change of curvature in x-direction
vy change of curvature in y-direction
t0 thickness of shell
pcr classical buckling pressure
HðÞ a mathematical operator

Fig. 1. A tsunami proof vessel, it holds up several people.
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