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a b s t r a c t

In this paper, the influence of the variable axial force and of the Secondary Torsion-Moment Deformation-
Effect (STMDE) on the deformations of beams due to torsional warping is investigated. The investigation
is based on the second-order torsional warping theory of doubly symmetric beams with thin-walled open
or closed cross-sections. The effect of the axial force on the torsional stiffness of thin-walled beams is
considered according to the second-order torsional warping theory. The solutions of the underlying dif-
ferential equations are used for setting up the relations, needed for application of the transfer matrix
method. They are derived, considering both static and dynamic action. This enables stablishing the local
element matrix of the twisted beam in the framework of the Finite Element Method (FEM). The numerical
investigation comprises static and modal analyses of thin-walled beams with I cross-sections and rectan-
gular hollow cross-sections. The results are compared with results obtained by the FEM, using solid and
beam elements available in standard software.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The effect of non-uniform torsion must be considered in struc-
tural analysis of thin-walled beams with open as well as closed
cross-sections. The maximum axial stress caused by the bimoment
occurs at the points of action of external torques (except for free
ends of beams) and at cross-sections of restrained warping (for
example clamped cross-sections). A broad comprehensive over-
view of the literature dealing with the issue of non-uniform torsion
can be found, for example, in [1,2]. Recent research results have
shown that for non-uniform torsion of beams with closed cross-
sections the influence of the Secondary Torsion-Moment
Deformation-Effect (STMDE) is particularly significant.

Beam structures are frequently exposed to dynamic loads. Com-
mercial FEM codes enable modal and transient analysis by 3D
finite beam elements without and with consideration of warping

[3–5]. For torsion, very often an improved Saint-Venant theory is
used and special mass matrices are considered. In general, the
bicurvature is chosen as an additional warping degree of freedom,
and the STMDE is not considered (Ref. [5] is an exception). The
beam element in [4] can be used with a lumped or a consistent
mass matrix. The consistent mass matrix includes warping effects,
but does not include the effect of shear deformations. For standard
beam elements, the consistent mass matrix is based on Ref. [6],
with the exception of additional terms arising from the warping
constant Ix: For the warping element, lumpedmasses for the warp-
ing degree of freedom (bicurvature) are defined in [7]. As stated in
[4], for solid and closed thin-walled sections, standard finite beam
elements can be used without significant error. However, for open
thin-walled sections, warping finite beam elements should be
used. In [5], however, the warping finite beam element is recom-
mended only for use for open thin-walled section beams. In [8], a
boundary element method is developed for the non-uniform tor-
sional vibration problem of doubly symmetric constant cross-
sections, accounting for non-uniform warping and secondary tor-
sional shear deformation-effects. Dynamic analysis of 3D beam ele-
ments, restrained at their edges and subjected to arbitrarily
distributed dynamic loading is described in [9]. In [10], an elastic
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non-uniform torsion analysis of simply or multiply connected
cylindrical bars with arbitrary cross-sections accounts for the
effect of geometric non-linearity in the framework of the
boundary-element method. In [11], the effect of rotary and warp-
ing inertia is considered. Nonlinear torsional vibrations of thin-
walled beams, exhibiting primary and secondary warping, are
investigated in [12]. A solution for the vibrations of Timoshenko
beams by the isogeometric approach is presented in [13]. Warping
effects, however, are not considered. In [14], geometrically non-
linear free and forced vibrations of beams with non-symmetrical
cross-sections are investigated by the Saint-Venant theory of tor-
sion. Axial-torsional vibrations of rotating pretwisted thin-walled
composite box beams, exhibiting primary and secondary warping,
are investigated in [15]. A formulation of a 3D beam element for
computation of transversal and warping eigenmodes is presented
in [16].

In [17], a new 3D finite element for geometrically nonlinear
analysis of beams, made of Functionally Graded Material (FGM)
with transversally varying material properties, is presented. The
warping displacements are accurately predicted.

In [1], the influence of torsional warping of open and closed
cross-sections of twisted beams, made of materials with constant
material properties, on their eigenvibrations is investigated, con-
sidering the secondary deformations due to the angle of twist.
Since the bicurvature cannot be used in the constraint equations,
see. e.g. [4], it was logical to consider the part of the first derivative
of the angle of twist, caused by the bimoment, as the warping
degree of freedom [18] also for modal analysis. The results from
modal analysis, concerning non-uniform and uniform torsion of
beams with open cross-sections, have shown large differences of
the eigenfrequencies. This has corroborated the well-known fact
that warping must be taken into account also for modal analysis
of beams with open cross-sections, subjected to torsion. It was also
shown that the STMDE does not play a significant role in torsion of
beams with open cross-sections. On the other hand, the torsional
eigenfrequencies, obtained in case of consideration of STMDE, are
very close to the ones obtained by 3D solid finite elements. In con-
trast to open cross-sections, the influence of warping (with or
without STMDE) on the non-uniform torsional eigenfrequencies
of beams with rectangular hollow cross-sections is not significant.
The best agreement of results obtained by solid finite elements and
by the method proposed in [1] (both for the Saint-Venant and the
warping beam solutions) is obviously achieved for the first tor-
sional eigenfrequency. For the higher modes, the difference
between corresponding results increases especially for short
beams. Some higher torsional eigenmodes, calculated by means
of solid finite elements, contain deformations of the side walls of
the beams. This effect cannot be considered in a straightforward
manner by finite beam elements with restrained and unrestrained
warping. As shown in [19], all eigenfrequencies calculated by solid
finite elements agree very well with results obtained by experi-
mental measurements.

Other very recent aspects in the area of numerical solutions of
non-uniform torsion are treated in [20–24]. Finally, in [2], a bound-
ary element solution is developed for dynamic analysis, consider-
ing warping of beams with arbitrary cross-sections, including
shear lag effects due to both flexure and torsion. High accuracy
of the results in comparison to the ones obtained by solid finite ele-
ment solution is obtained. However, in the solid model, the distor-
tion effect of the cross-section was restrained.

A common feature of the above cited articles is disregard of the
effect of the variable axial force on torsional warping.

In this paper, the work reported in [1] is extended to uniform
and non-uniform torsional analysis of beams with a variable axial
force. In Chapter 2, the differential equations of beams with such
an axial force are formulated for Saint-Venant and non-uniform

torsional deformations, including inertial line moments. In non-
uniform torsion, the part of the bicurvature, caused by the bimo-
ment, is taken into account as the warping degree of freedom,
and the STMDE is also considered. A general semi-analytical solu-
tion of the differential equation is presented in Chapter 3, the
transfer matrix relation is established in Chapter 4, from which
the finite element equations for beam elements with two nodes
are derived in Chapter 5. Omitting the external load, the FEM equa-
tion for the torsional natural free vibrations is obtained. The
numerical investigation in Chapter 6 deals with torsional modal
and elastostatic analysis of thin-walled beams with I cross-
sections and rectangular hollow cross-sections. The obtained
results are compared with the ones from commercial FEM codes.
The effect of the axial force is evaluated. A final assessment of
the proposed method is contained in the conclusions. Some of
the mathematical details are explained in the Appendix.

The main novelties of the present paper are:

(1) consideration of a variable axial force and of the STMDE in
the differential equation for non-uniform torsion of thin-
walled beams with open and closed cross-sections according
to the theory of second-order torsional warping;

(2) formulation of the equations needed for the transfer matrix
method and the FEM for elastostatic and modal analysis of
non-uniformly twisted beams according to this theory.

2. Differential equation of the torsional deformations of beams
with variable axial forces

According to the theory of second-order torsional warping, the
axial forces affect the torsional stiffness GIT , where G is the shear
modulus and IT is the torsion constant. Basically, compression
results in a decrease and traction in an increase of the torsional
stiffness GIT of the beam. This situation may be considered by an

additional stiffness N i2p (e.g. [25]) for doubly symmetric cross-
sections, where N is the known axial force, acting at the center
point of the cross-section, and ip ¼

ffiffiffiffiffiffiffiffiffi
IP=A

p
denotes the radius of

gyration and IP is the polar moment of area. In case of a variable
axial force NIIðxÞ ¼ NðxÞ, the corresponding variable torsional stiff-

ness is obtained as GI�TðxÞ ¼ GIT þ NIIðxÞ i2p , where the term NIIðxÞ i2p
denotes the so-called geometric stiffness. Representing a load,
the axial force NðxÞ appears in the respective term of the differen-
tial equation for the displacement in the longitudinal direction. The
variable axial force NIIðxÞ appears in the homogeneous part of the
differential equation for the angle of twist. The variation of the
known axial force NIIðxÞ accounts for the stiffening or softening
of the torsional stiffness in the framework of the second-order tor-
sional warping theory. For doubly symmetric cross-sections, the
torsional deformations are decoupled from the bending deforma-
tions and the longitudinal deformations. For this case, the differen-
tial equation for the angle of twist will be established in this
Chapter.

Fig. 1 refers to the second-order torsional warping theory. It
shows the axial force NIIðxÞ, the torsional moment MTðxÞ as the
sum of the primary torsional moment, MTpðxÞ; and the secondary
torsional moment, MTsðxÞ, and the bimoment MxðxÞ. Fig. 1 also

Fig. 1. Second-order torsional warping theory: axial force, torsional moments and
angles of twist.
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