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a b s t r a c t

Most of forces acted on real structures are dynamic and topology optimization of dynamic structures has
aroused wide attention over the past years. Due to the complexity of dynamic behavior, achieving clear
0/1 optimal topology of dynamic structures is still challenging. This paper aims to develop a topology
optimization algorithm of dynamic structures under periodic loads based on the bi-directional evolution-
ary structural optimization (BESO) method. To minimize the dynamic compliance under the single or
multiple excitation frequencies, four typical topology optimization problems are proposed for different
scenarios. To solve the defined topology optimization problems, sensitivity analysis with regard to the
variation of design variables is conducted for iteratively updating the structural topology. Since BESO
uses discrete design variables, the resulting solid-void solutions show unambiguous topologies of
dynamic structures. Various 2D and 3D numerical examples are given to demonstrate the capability of
the proposed method for obtaining optimal designs of dynamic structures under periodic loads.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization of continuum structures aims to find the
best distribution of materials within a given design domain. Since
the landmark paper of Bendsøe and Kikuchi [1] in 1988, many
topology optimization techniques, such as the solid isotropic mate-
rial with penalization (SIMP) [2,3], level set [4,5], the evolutionary
structural optimization (ESO) [6,7] and bi-directional ESO (BESO)
[8,9], have been developed and successfully demonstrated on the
minimum compliance of static continuum structures.

Since most of forces acted on real structures are dynamic,
topology optimization for dynamic structures has attracted wide
attention over the past decades. For free vibrating structures,
frequency optimization aims to drive natural frequency away from
unfavorable frequency range and has been investigated by the
homogenization method [10,11] and the SIMP method [12–14]
by relaxing discrete design variables to continuous ones. ESO was
recognized as a hard-kill method, which directly removes elements
from the ground structure [15]. The occurrence of the artificial
localized modes can be avoided due to removing elements. Never-
theless, such a hard-kill algorithm is often problematic for fre-
quency optimization since the sensitivities of removing elements

cannot be calculated and are wrongly assumed to be zero
[16,17]. Therefore, Huang et al. [18] developed a ‘‘soft-kill” BESO
method for topology optimization of structures by maximizing
natural frequency, where the sensitivities of ‘‘soft” elements were
accurately calculated. The study successfully obtained convergent
solutions with clear 0/1 optimal topologies for frequency optimiza-
tion problems.

Topology optimization of dynamic structures for forced vibra-
tion is of great importance in many engineering fields, e.g., con-
structional engineering and mechanical engineering. Similar to
forced vibration analysis, topology optimization of dynamic struc-
tures can be conducted in the time domain or the frequency
domain. Topology optimization of dynamic structures in the time
domain aims to maximize the instant stiffness or strain energy of
the structure within the specified time [19–22]. Thus, the selection
of the terminate time is critical. Since the transfer of applied loads
to supports needs some time, topology optimization using a short
termination time may result in an unrealistic design, e.g., with
material distributed around the applied loads without any sup-
ports. However, a long terminate time leads to expensive computa-
tion burden for topology optimization [22].

Alternatively, dynamic response topology optimization can be
conducted efficiently in the frequency domain for structures sub-
ject to periodic loads. Ma et al. [23] proposed the homogenization
method to tackle topology optimization problems for optimizing
dynamic response by minimizing the dynamic compliance. Jog
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[25] optimized dynamic structures subject to the periodic loading
with the local and global definition of dynamic compliances. Shu
et al. [25] defined the dynamic response of connection points or
surfaces as the objective function to suppress the vibration on
these points or surfaces by using the level set method. Olhoff and
Du [26,27] studied topology optimization of structures under
forced vibration by minimizing dynamic compliance using the
SIMP method. Liu et al. [28,29] minimized the displacement ampli-
tude at the specified location of structures under harmonic force
excitations. Kang et al. [30,31] investigated the optimal distribu-
tion of damping material in vibrating structures. Zhang and Kang
[32] developed the aggregated dynamic compliance in a given fre-
quency range for topology optimization of piezoelectric layers in
plates for the best vibration control performance.

Although topology optimization of structures under dynamic
loads have been extensively investigated [23–32] based on finite
element analysis, the discrete 0/1 design variables were normally
relaxed with continuous ones. Thus, finite element models
unavoidably contained artificial intermediate elements, whose
design variables are between 0 and 1. Such intermediate elements
may cause local resonance and further lead to a wrong search
direction of optimization if uncorrected. Furthermore, the dynamic
response of the resulting optimized designs may also be inaccurate
due to the existence of intermediate elements. BESO directly uses
discrete design variables, which has potential to avoid these prob-
lems. Hence, this paper aims to extend the BESO method to topol-
ogy optimization of dynamic structures under forced vibration to
eliminate the local vibration modes and achieve clear 0/1 opti-
mized topologies. The paper is organized as follows: Section 2
briefly introduces finite element analysis for dynamic structures
in the frequency domain. Section 3 presents various topology opti-
mization problems for dynamic structures under periodic loads,
then follows sensitivity analysis. Section 4 describes numerical
implementation of the BESO procedure. Numerical examples and
discussion are presented in Section 5 to demonstrate the effective-
ness of the proposed method. Conclusions are drawn in Section 6.

2. Finite element analysis

When a continuum structure is discretized with finite elements,
the equilibrium equation for dynamic response of the structure
subject to a force Pt with the time varying is written as

M€Xt þ C _Xt þ KXt ¼ Pt ð1Þ

where €Xt , _Xt and Xt are the acceleration, velocity and displacement,
respectively.M, C and K represent the structural mass, damping and
stiffness matrices, respectively. The structural mass matrix, M, and
stiffness matrix, K, can be expressed by

M ¼
XNE

i¼1
mi

K ¼
XNE

i¼1
ki

8<
: ð2Þ

where NE is the total number of elements in the design domain. mi

and ki are the elemental mass and stiffness matrices, which are cal-
culated by

mi ¼
R
Vi
qiN

TNdV

ki ¼
R
Vi
BTDiBdV

8<
: ð3Þ

where Vi is the volume domain of the i-th element, qi and Di are the
mass density and constitutive matrix, respectively. N and B repre-
sent elemental shape function and strain-displacement matrices.

It is assumed that Rayleigh damping model can be adopted and
the damping matrix is simplified by a linear combination of M and
K [33] as

C ¼ b1Mþ b2K ð4Þ
where b1 and b2 are the damping coefficients. They can be deter-
mined by

b1 ¼ 2xixjðxjni �xinjÞ
x2

j �x2
i

; b2 ¼ 2ðxjnj �xiniÞ
x2

j �x2
i

where fi and fj are modal damping parameters corresponding to
the two different natural frequencies xi and xj. xi donates the
smallest natural frequency and xj >xi is selected by the loading
response. In this paper, both of the two modal damping
parameters are assumed to be 0.01. xi and xj are the first two
natural frequencies and the resulting damping matrix is positive
definite.

A harmonic load at a given excitation frequency, Pt = Peixt is
assumed and the displacement response at the steady state can
be represented by Xt = Xeixt. Here, P and X denote the amplitudes
of the excitation load and the response displacement, respectively.
Thus, the equilibrium equation can be converted in the frequency
domain as

ð�x2Mþ ixCþ KÞX ¼ P ð5Þ
where X = Xr + iXs is complex, and Xr and Xs donate the real and
imaginary parts of the displacement amplitude, respectively.

3. Topology optimization formulation

3.1. Topology optimization problems

This paper will investigate the following four topology opti-
mization problems for dynamic response of structures. Consider
a dynamic structure under a harmonic load with a certain excita-
tion frequency, the optimization objective is to suppress the
vibration of the structure. The vibration of a dynamic structure
can generally be measured by the amplitude of the response dis-
placement. Following the dynamic compliance defined in Ma
et al. [11], the dynamic compliance is the absolute product of
the amplitudes of the excitation force and response displacement,
Cd = |PTX|. The first topology optimization problem for a dynamic
structure under a given excitation load can be mathematically
stated by

P1 :

min f ðxiÞ ¼ jPTXj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPTXrÞ2 þ ðPTXsÞ2

q

s:t: V� �
XNE

i¼1
Vixi ¼ 0

xi ¼ xmin or 1

(
8>>><
>>>:

ð6Þ

where V⁄ is the prescribed structural volume and Vi denotes the vol-
ume of the ith element. xi is the design variable, which can take dis-
crete values xmin or 1. xi = xmin means that element i is void, where
xmin = 10�3 is used throughout the paper to avoid the singularity.
xi = 1 means that element i is solid.

The above topology optimization problem highly depends on
the excitation frequency of periodic loads. Previous numerical
experience showed that the structure lost its integrity as the exci-
tation frequency increased, and the resulting design failed to
undertake any static load [26,27]. To eliminate this problem, one
additional constraint on the static compliance can be included in
the optimization problem. The topology optimization problem is
therefore defined as
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