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a b s t r a c t

This study assesses coupled shear walls (CSWs) equipped with passive damping systems using the
damped continuum models developed as Coupled-Two-Beams (CTB). CTB models consisting of various
distributed-parameter damping mechanisms are established. Numerical solutions for the dynamic anal-
ysis of these continuum systems are developed using a simple Finite Element (FE) model. It is illustrated
how passive damping systems, viscous dampers and viscoelastic dampers, with various installation
arrangements can be modeled with the use of the equivalent shear damping in a CTB system. Based
on the dynamic analysis, the accuracy of damped CTBs with respect to different damping cases are ver-
ified. Two controlling parameters are introduced to evaluate the effect of both stiffness and supplemen-
tary damping on dynamical responses. The parametric study of passively-damped wall systems subjected
to seismic loading is performed by emphasizing the effect of global bending and controlling parameters.
Based on the important responses obtained from the dynamic analyses, optimal features of distributed
damping such as damping length and its value are investigated with regard to the damping controlling
parameter. This work shows that the developed CTB systems with the shear damping model are suitable
tools for the dynamic analysis and the preliminary design of CSWs equipped with velocity-dependent
dampers.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, different software packages are available for the
exact analysis of structures based on a complete modeling. How-
ever, researchers and structural engineers usually look for simpler
approaches when dealing with more complex structures. Hence,
approximate analysis procedures are established in order to sim-
plify the structural analysis and design. One of these procedures
that is commonly introduced in the literature is the continuum
method [1–5]. For building structures, this method basically leads
to an idealized one-dimensional continuous model that is charac-
terized by equivalent stiffness properties, properly representing
the real stiffness of the structure. In the case of tall buildings,
the cantilevered beam may quite naturally arise as a reference
continuummodel. The classical cantilevered beams mainly include
Euler-Bernoulli Beam (EBB); Shear Beam; Timoshenko Beam (TB);
Sandwich Beam; and Coupled-Two-Beams (CTB) [5].

In addition to the stiffness characterization that is addressed
frequently in continuum models [4], damping features can also
be established by means of distributed-parameter models. In this

case, a consistent continuum-based definition seems to be useful
not only for a proper analysis of inherent damping in the
structure but also for the assessment of supplementary passive
damping [6–8]. A comprehensive overview on the most-used
damping models in continuous beams can be found in the
literature [9–13].

Distributed damping models were established [14–16] to study
energy dissipation mechanisms in Euler-Bernoulli Beams (EBB)
which are simple systems suitable as the first approach in model-
ing tall buildings. Both external viscous damping and internal
viscous damping models distributed along the EBB were studied.

In order to capture the dynamic behavior of shear-type build-
ings (frames), different damping models were discussed based on
the Shear Beam formulation. It was recommended to use the equal
modal damping model in structures with no energy dissipating
devices or with friction-type dissipators. In addition, the internal
damping in the Shear Beam could be applied where energy dissi-
pating devices, e.g., linear viscous dampers, exist in structures
[17]. The evaluation of dynamic responses affected by continuous
damping models in Timoshenko beams (TB) was found an active
research topic [18–20]. Such beam systems were used to
equivalently model shear walls or trussed resisting schemes. The
location and the length of damped segments in TBs with partially
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Distributed Internal Viscous Damping (DIVD) was investigated by
several researchers [21–25].

Theories of Sandwich Beams, as more advanced beam systems
compared to EBBs and TBs, were applied for the analysis of com-
posite structures in which the effect of viscoelastic distributed
damping layers on vibrational and dynamical responses was
reported by several researchers [26–33]. Such beam models were
introduced appropriately for modeling and analyzing various
building structural systems, e.g., coupled shear walls, frames, and
a combination of several systems [2]. Also, Coupled-Two-Beams
(CTB) consisting of a flexural beam and a shear beam was proposed
for modeling building structures, where the velocity-dependent
viscous damping and equivalent modal damping ratio were used
to model inherent energy dissipation mechanism [34]. Tarjan and
Kollar [35] exclusively proposed the estimation of modal quantities
of damping in various continuous beams, without proposing the
physical damping models in such systems.

In terms of passive damping modeling in coupled shear walls
(CSWs), the efficiency of viscous dampers as coupling elements
was assessed based on a shear-type damping proposed for a
continuum model with the flexural behavior (EBB) [36]. A semi-

analytical solution followed by a complex modal spectral analysis
was developed for the response assessment. The full distribution
of damping along the height was considered, without addressing
the optimization aspects of the damping model. Tokarev and Lavan
[37] further developed the continuummodel for the seismic design
of coupled walls or trusses with viscous dampers placed in discrete
positions along the height. Based on the concept of a cantilever EBB
equipped with a rotational damping as the equivalent model of a
damper, some non-dimensional controlling parameters were
defined and a parametric study using the complex modal spectral
analysis was performed to analyze important responses with
respect to the damping value and its location throughout the
height. The authors concluded that the most efficient location for
discrete dampers was around the top, resulting in more reductions
in responses and higher forces in the dampers.

More recently, damped beam systems capable of modeling
CSWs equipped with velocity-dependent dampers were proposed
[38–40]. The distributed-parameter damping mechanisms in these
systems were theoretically exploited in order to properly achieve
dynamic responses in both inherently-damped and supplementary
passively-damped configurations. In addition to the linear

Nomenclature

A1, A2 cross-section areas of left and right walls
Ab, Ac area of connecting beams and continuum core
B1, B2 width of left and right walls
CSW Coupled Shear Wall
CTB Coupled-Two-Beams
DIVD Distributed Internal Viscous Damping
EBB Euler-Bernoulli Beam
QEP Quadratic Eigenvalues Problem
RC Rotational Constraint in CTB
TB Timoshenko Beam
C global damping matrix
Ce damping matrix of eth FE
Cadd, C5% resultant value of passive damping and of 5% inherent

damping
c classical viscous damping
cb bending damping
cd viscous damping coefficient in dampers
ceq equivalent shear damping in CTB
cs shear damping
E elastic Young’s modulus
F global force vector
Fe generalized force vector of eth FE
f(x,t) distributed transverse load
G elastic shear modulus
Geq equivalent shear modulus in continuum model
G0 shear storage of viscoelastic material
G00 loss modulus of viscoelastic material
h, hb story height and depth of connecting beams
I1, I2 moments of inertia of left and right walls
Ib, Ic moment of inertia of connecting beams and of contin-

uum core
Im(x1) oscillating part of fundamental mode
K global stiffness matrix
Ke stiffness matrix of eth FE
Ka1 equivalent axial stiffness of walls
Kb1 sum of flexural stiffnesses of walls
Ks1 sum of shear stiffnesses of walls
Ks2 equivalent shear stiffness of core
kd stiffness coefficient in dampers
keq equivalent shear stiffness in CTB
L Lagrangian

L total height
Ld length of equivalent distributed passive damping in CTB
‘ length of eth FE
‘b; ‘

0
b free and modified length of connecting beams

M global mass matrix
Me mass matrix of eth FE
m(x) space-dependent distributed mass density
�m distributed mass along the height coming from floor

masses
N(x) shape functions matrix containing linear function inter-

polations
q; _q generalized displacement and velocity fields
R Rayleigh Dissipation Function
Real(x1) decay rate of fundamental mode
se x; tð Þ generalized displacement vector
T Kinetic Energy
Temp temperature in viscoelastic material
t thickness of connecting beams
Ue nodal displacement vector of eth FE
u, _u transverse displacement and velocity
€ugðtÞ ground acceleration
V Potential Energy
W work produced by external load
w; _w axial displacement and velocity in walls
b dimensionless coordinate in FE
ui natural ith mode shape
c shear strain in viscoelastic material
cu, ch, cw horizontal, rotational, and vertical mass of walls
g controlling parameter of passive damping
j shear correction factor
k controlling parameter for three-field CTB
k⁄ controlling parameter without global bending effect in

CSWs
m modification coefficient of connecting beam length
xi natural frequency associated to ith mode
�xi complex eigenvalues associated to ith mode
xd,1, xN,1 damped and natural frequency of fundamental mode
q; _q rotation in continuum core and its rate
qd;qc walls and core masses per unit volume
h; _h rotation and its rate in walls
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