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a b s t r a c t

The objective of the present work is to develop a robust, yet simple-to-implement algorithm for dynamic
vehicle-track-structure-interaction (VTSI) analysis, applicable to trains passing over bridges. The algo-
rithm can be readily implemented in existing bridge analysis software with minimal code modifications.
It is based on modeling the bridge and train separately, and coupling them together by means of kine-
matic constraints. The contact forces between the wheels and the track become Lagrange multipliers
in this approach. A direct implementation of such an approach results in spurious oscillations in the con-
tact forces. Two approaches are presented to mitigate these spurious oscillations – (a) a cubic B-spline
interpolation of the kinematic constraints in time, and (b) an adaptation of an alternate time-
integration scheme originally developed by Bathe. Solutions obtained using this algorithm are verified
using a generic differential algebraic equation (DAE) solver. Due to high train speeds and possible track
irregularities, wheels can momentarily lose contact with the track. This contact separation is formulated
as a Linear Complementary Problem (LCP). With this formulation, including contact separation in the
analysis amounts to replacing a call to a linear equation solver by a call to an LCP solver, a modification
of only two steps of the procedure. The focus of this paper is on the computational procedure of VTSI
analysis. The main contribution of this paper is recognizing computational issues associated with
time-varying kinematic constraints, clearly identifying their cause and developing remedies.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle-track-structure-interaction (VTSI) consists of the recip-
rocal influence of a bridge and a train on each other. As a train tra-
verses a bridge, the deflections of the bridge as well as
irregularities in the track act as support displacement input to
the train at its wheels. The ensuing dynamics of the train in turn
cause time-varying forces and vibration in the bridge. The purpose
of VTSI analysis is to assure track safety and passenger comfort [1].
Passenger comfort is related to the acceleration experienced while
the train is passing over the bridge [1]. Track safety depends on the
rate of loading of the track with time-varying forces from the train.
For high-speed trains, this rate of loading may coincide with natu-
ral frequencies of the bridge resulting in resonance and amplifica-
tion of bridge response. Moreover, geometric track irregularities
may cause magnification of the contact forces and damage to the
wheels and the track [2], or even train derailment under extreme
conditions, such as earthquakes [3] and collisions [4]. Therefore,

assessment of vehicle running safety is another important reason
for VTSI analysis.

Mathematically, VTSI can be represented as a system of two sets
of equations of motion, for the train and bridge subsystems. Sun
et al. [5] distinguish three types of algorithms for solving this sys-
tem. The first group of algorithms aims to solve the system directly
[2,6–8]. This approach is based on combining the two sets of equa-
tions into a single equation and solving the obtained equation. The
second method requires condensation of vehicle degrees of free-
dom (DOF) into the bridge equation of motion and solving this
updated equation. Based on such an approach, Yang et al. [9] pro-
posed a vehicle-bridge interaction element. The third approach is
to solve equations of motion of the vehicle and the bridge sepa-
rately using iterative procedures [10–12]. As Sun et al. [5] have
pointed out, the first type of algorithms cannot be easily imple-
mented into existing structural analysis software due to the fact
that vehicle and bridge models are combined together. The second
method does not allow incorporating the various train models into
analysis, and also requires specialized analysis software. The third
approach is the most suitable in terms of incorporating a VTSI algo-
rithm into existing software. However, as it was observed by Yang
et al. [9], the VTSI problem involves a large number of contact
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points between the wheels and track, hence convergence of itera-
tive procedures may be low. Sivaselvan et al. [13] proposed an
algorithm that overcomes these drawbacks and can be integrated
into existing software. The idea is to complement the system of
equations of motion with a constraint equation and then solve
the equations of motion of the vehicle and bridge separately using
the constraint condition and avoiding an iterative procedure. In
this case, a system of differential–algebraic equations (DAE) is
obtained, which requires careful consideration of the numerical
integration scheme. Moreover, adopting such a modular approach,
contact separation between the wheels and the bridge can be
easily modeled by formulating a linear complementary problem
(LCP). The formulation of contact problems using complementarity
methods has a long history [14], and, as a result, rolling wheel-rail
contact can be modeled at various levels of detail [15–18]. Zhu
et al. [19] proposed a similar approach applying the mode superpo-
sition method to the bridge.

In the present work, the VTSI algorithm proposed by Sivaselvan
et al. [13] is expanded upon. The main goal is to develop a highly
modular algorithm that can be incorporated into existing software
without interfering with the bridge model formulation. However,
the cost of this modularity is the necessity to solve a DAE system.
As opposed to the approach proposed by Zhu et al. [19], the current
algorithm employs a general finite element model of the bridge
directly, without utilizing the mode superposition method, which
allows broadening the usage of algorithm and applying it to differ-
ent types of bridges.

The organization of the paper is as follows. In Section 2, a sys-
tem of governing equations of motion is derived. Various time-
integration approaches are discussed in Sections 3–5. Finally, in
Section 6, contact separation between the wheel and the bridge
is considered.

2. Governing equations

A conceptual model of a train passing over a bridge is illustrated
in Fig. 1. The train is modeled as a sequence of cars. Each car is rep-
resented as a multibody system composed of rigid bodies, springs
and dashpots. The bridge is modeled using standard structural or
finite elements, such as beam and plate elements, box girders,
cables, etc., i.e. any elements that can be utilized in commonly used
bridge analysis software.

The following assumptions are used to develop the algorithm
for two-dimensional VTSI analysis [13]:

1. The train moves on a straight-line path along the bridge (curved
paths are a topic of current research and will be addressed in a
subsequent paper), so that the train dynamics are entirely pla-
nar, and the train loads on the bridge are in the global Z
direction.

2. The train and bridge displacements are small, so that linearized
kinematics can be used for both. Material behavior is also linear.

3. The speed of the train is constant.

4. Through Section 5, the train wheels do not lose contact with the
bridge (contact separation is considered in Section 6).

5. When a wheel is outside the span of the bridge, its displace-
ment is zero.

6. At any time instant, each wheel is on only one element. If a
wheel is on a joint, it is arbitrarily assigned to a bridge element
connected to that joint (see Fig. 2).

7. Dead loads are applied to the bridge and the train using static
analysis before dynamic analysis is performed.

2.1. Train model

The train is modeled as a sequence of cars, each of which is a
multibody system. The equation of motion of the train can then
be written as (1).

Mt€ut þ Ct _ut þ Ktut þ Lt� �T
k ¼ Pt ð1Þ

where Mt;Ct and Kt are the mass, damping and stiffness matrices of
the train model, Pt is the external load vector, such as a constant
self-weight load on the train model, and ut is a vector of train dis-
placements. Matrix Lt represents the influence of the reaction forces
from the bridge on the train model. This matrix also plays a role in
the constraint Eq. (6). Vector k is the vector of contact forces
between the train wheels and the bridge (positive downward on
the bridge and upward on the wheels). Here superscript ‘‘t” stands
for train.

2.1.1. Example
To illustrate how Eq. (1) comes about, a simple car model com-

posed of a rigid bar connected to the wheels through dashpots and
springs is considered. One such car is shown in Fig. 3a. The train is
assumed to have Nt

WH wheels.
Using free body diagrams of the car and the wheels in Fig. 3b,

the equations of motion of the train model are derived as (compare
with Eq. (1)):
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where mw is the mass of each wheel; mc and Ic are the mass and
moment of inertia of the carriage; ks and cs are the stiffness and
damping of each suspension, lc is wheel-to-wheel distance; ut

i are
displacements of the train model.

Fig. 1. Conceptual model of a train passing over a bridge.
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