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a b s t r a c t

Topological Optimization (TO) of a structure with elastic-linear behavior considering a multi-objective
problem is the goal of this work. For this process, an evolutionary heuristic formulation denominated
SESO (Smoothing Evolutionary Structural Optimization) in conjunction with a finite element method
was applied. In order to find the best topology, the authors choose to use the Analytic Hierarchy
Process (AHP), which provides a simple but theoretically sound multiple-criteria methodology for eval-
uating alternatives. Together with the Weighted Sum Method (WSM), which is considering one of the
best and simplest multi-criteria decision analyses or multi-criteria decision making method for evaluat-
ing a number of alternatives in terms of a number of decision criteria, this work aims to show the best
topology among an interactive process focusing on four parameters: volume, displacement, stress and
performance index. Some numerical examples are presented in order to show how the topological opti-
mization process works and as such, to demonstrate the advantages of combining SESO, AHP andWSM as
a structural optimization method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization process aims to find a suitable model, accord-
ing to one or more cost criteria, in order to minimize (or to maxi-
mize) design constraints. In other words, it can be stated that
optimization is the search for a better model to meet a specific pro-
ject requirement.

In the structural design field, there are three basic types of opti-
mization. First, the parametric optimization, in which the structure
presents a fixed shape and topology and only the constitutive
materials used and/or the dimensions of the structural elements
can change [1]. Furthermore, the shape optimization, in which
the structure presents a fixed topology, varying its shape and not
having cavity insertions in the domain of the model [2]. Finally,
the topological optimization, in which is a generalization of other
optimization types, allowing both the insertion of cavities in the
initial domain and the remodeling of the initial boundary shape
[3]. Moreover, there is the topography optimization, although is a
very special type of shape optimization that aims to find a distribu-
tion pattern of the reinforcement of structures, such as plate and
shell [4].

Sometimes, it is necessary to systematically and simultaneously
optimize a collection of objective functions, and this process is
called multi-objective optimization (MOO) or vector optimization
[5,6]. Multiple conflicting criteria could need to be handled, and
satisfying a group of criteria may not be so easy. Multi-objective
optimization thus deals with such conflicting objectives, providing
a mathematical framework towards an optimal design state which
accommodates the various criteria demanded by the application.

In order to solve a problem with multiple objectives, there is a
tool that helps decision making called Analytic Hierarchy Process
(AHP). According to [7], it is one of the most widely used
multiple-criteria decision-making tools. This method consists in
comparing pairs of attributes measured on a scale of priorities. This
scale is defined by the user, following any kind of criteria, in which
an absolute score has been given to each attribute, and a higher
value represents that one element dominates another as regards
that pair of attribute. At the end of the process, the corresponding
weights are obtained and applied to a process called WSM, used
extensively not only to provide multiple solution points by varying
the weights consistently, but also to provide a single solution point
that reflects preferences presumably incorporated in the selection
of a single set of weights [8].

Evolutionary methods need to perform an iterative process to
achieve the optimal topology, generating partial responses. To
determine the end of the optimization process, these methods
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require a stopping criterion, whose commonly adopted parameter
is the volume. Often however, the topology obtained at the end of
the iterative process whose final volume is equal to the volume
adopted as stopping criterion, it does not actually correspond to
the optimal desired topology. Therefore, we use the AHP to find
the weights and use them in the WSM to determine the optimal
topology from the weighing concerning the four parameters eval-
uated in the structure: volume, displacements, stress and perfor-
mance index.

Evolutionary methods can be used to find solutions for different
problems. First, [9] apply the ESO topological method to obtain the
strut-and-tie model for reinforced concrete structures, considering
the nonlinear material behavior of concrete. Otherwise, [10] pre-
sent a topological optimization procedure applied to the design
of a support plate for an eolic turbine. Also, [11] mention that
robust topological optimization minimizes the sensitivity to struc-
tural uncertainties and imperfections, which are conditions not
considered in the initial design but very important for the struc-
tural performance and safety. Finally, [12] design a bicycle struc-
ture using the topological optimization.

The use of new isotropic and non-homogeneous materials, such
as Functionally Graded Materials (FGM) are growing in the last
years. The optimization procedure presented in this paper can be
used if the kinematics is included in the finite elements. [13] pre-
sent analytical solutions for the bending and free vibration analysis
suitable for simply supported plates. Bending, shear deformation
and thickness stretching effects are considered for the FGM analy-
sis. [14] study the shear deformation and thickness stretching
effects together with thermal effects in the FGM analysis. More
recently, [15] present a new hyperbolic shear deformation theory
applicable to bending and free vibration analysis of isotropic, func-
tionally graded, sandwich and laminated composite plates.

Also, [16] presents a deterministic algorithm used to obtain the
optimal topology that penalizes the density of the finite elements.
This kind of algorithm is computationally expensive and uses an
approximated stop criteria based on the variation of the objective
function value. According to [17], the objective function is not nor-
mally available for most of the topological optimization problems
found in real engineering applications. Moreover, according to
[18] the calculation of the gradient can be computationally expen-
sive and for those cases where the objective function presents dis-
continuity or functions with some degree of complexity it becomes
more complicated to obtain a response. Optimization algorithms
based on volume removal criteria, such as those presented in
[10] and [19], not guarantee that the final reached volume is the
real volume corresponded to the optimum topology. The present
work aims to improve the search for the optimum topology, avoid-
ing the calculation of the gradient necessary to obtain the hessian
matrix.

2. Smoothing evolutionary structural optimization (SESO)

SESO is a variant of the ESO (Evolutionary Structural Optimiza-
tion) method, developed by [8], consisting of a gradual removal of
finite elements previously generated, in regions that do not effec-
tively contribute to the structure (‘‘inefficient materials”) by any
of the criterion for rejection. It is an heuristic topology optimiza-
tion method that gradually and smoothly removes finite elements
as compared with the classical ESO. This procedure starts with a
discretization of the entire structure in a fixed finite element mesh,
also named design or extended domain, which includes the bound-
ary conditions (forces, displacements, cavities and other initial
conditions) of the elastic problem to be solved iteratively via
FEM. Afterwards, the von Mises stress is evaluated at each element,
and the highest stress value of the whole structure, the maximum

von Mises stress, is taken as a reference to be used in inequality
(1a), as described in [19].

rmm
e < RRk � rmm

i;max ð1aÞ

RRkþ1 ¼ RRk þ RE ð1bÞ
where rmm

e is the equivalent von Mises stress of the i-th element in
the iteration and rmm

i;max is the maximum effective stress of the struc-
ture in the iteration ‘‘i”; RRk is the Rejection Ratio at the k-th steady
state (0.0 � RRk � 1.0), which is an input parameter that is updated
using the Rate of Evolution (RE). The evolutionary process is defined
by adding the rate of evolution to the Rejection Rate, presented in
Eq. (1b), which is applied to control the removal of the elements
during the evolutionary process.

Hence, the elements that satisfy Eq. (1a) are gradually removed
from the mesh by an iterative process until a steady state is
achieved. This removal is conducted by altering the constitutive
matrix, for example, by setting a very small value to that element
stiffness, which makes this element inefficient without the need to
remake the mesh in the problem.

However, just removing the elements in the iteration according
to Eq. (1a), can often lead to an early or precipitated withdrawal of
elements that should not be removed. This happens often seeing
that during the evolutionary process, a certain element that should
not have been taken out was removed just to reach this equation.
The generated solution is forced, non-optimal and possibly gener-
ates an unstable region called ‘‘chessboard” (or ‘‘checkerboard”),
considered to be one of the major problems in the topological opti-
mization of structures that occurs due to the poor conditioning
model of the stiffness matrix, which means inadequate conver-
gence analysis [20,21]. To solve this problem, SESO proposes an
organization of elements that does not satisfy Eq. (1a) such that
(p%) of these elements are removed and (1 � p%) is returned to
the structure (Fig. 1). This return is accomplished by a regulating
function that performs a smoothing procedure or, in other words,
it weights elements with a higher potential for removal and
removed elements that can be returned to the mesh. This proce-

Fig. 1. Flowchart of the SESO method including the software Salome-Meca�.
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