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a b s t r a c t

In this paper, a new flexibility-based beam-column element with member initial imperfection is pro-
posed for direct analysis or second-order inelastic analysis of steel structures. In past decades, the
stiffness-based elements gain great successes in handling large deflection problems while the
flexibility-based elements play a dominant role in plastic analysis. Apart from the merits of the above
two types of elements, the proposed flexibility-based type element considers member initial imperfec-
tion and distributed plasticity along the member length and therefore one element is generally sufficient
to model a member for practical design. On the contrary, several stiffness-based elements are required to
model a member in order to capture the plastic behavior of member under complex loads. The conven-
tional flexibility-based type elements cannot meet the codified requirements of direct analysis as they do
not take member initial imperfection into account and this limitation is removed in the new element pro-
posed in this paper. Several examples are given in this paper to illustrate the accuracy and validity of the
proposed element.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The terms ‘‘Direct Analysis”, ‘‘Second-order Analysis” and
‘‘Advanced Analysis” appear in many modern design codes such
as AISC-LRFD [1] and Eurocode-3 [2]. All these analysis methods
essentially aim to assess the member and system stability in an
integrated manner in place of separated individual member check
adopted in the traditional linear analysis with the effective length
method (ELM). The motivation of the new design method is that
the analysis outcome can be directly used for design intent without
further uncertain capacity reduction for buckling check using the
effective length factor, provided that the analysis method can reli-
ably capture the structural behavior with consideration of impor-
tant factors affecting member and system strength. If one or
more key factors are excluded, the design method will be classified
as ‘‘Indirect Analysis”.

It is well known that the second-order P-D and P-d effects, ini-
tial geometrical imperfections in both member and system levels,
residual stress, material yielding and joint behavior should be
included in the direct analysis as these factors may significantly
contribute to the deflection and instability affecting the computed

stress. The most difficult but vital consideration is to incorporate
the member initial bowing to an analysis process so that the stabil-
ity of member and system as well as their interaction can be taken
into account. The structural model using one element per member
in direct analysis is highly preferred for efficient and accurate mod-
eling of initial out-of-straightness, which is unavoidable for real
structural member and required for consideration in design codes.
In contrast, modeling of a member by several elements is undesir-
able since more extensive modeling effort and longer computer
time will be required. Generally speaking, the directions of the
member initial imperfections following the lowest global buckling
mode are considered most favorable in a few design codes.

Chan and Zhou [3] and Liu et al. [4,5] proposed several stiffness-
based (also well known as displacement-based) beam-column ele-
ments allowing for member initial imperfection for second-order
direct analysis (SODA). Chan and Gu [6] developed an initially
curved stability function which can accurately trace the nonlinear
behavior of slender members even under extreme cases when
buckling dominates. In conjunction with refined plastic hinge tech-
nique [7], the above works are extended to inelastic analysis of
steel and composite structures [8,9]. As the element stiffness
matrices of the works [3–6] are based on explicit integration with-
out need of using the numerical quadrature rule such as Gauss
quadrature for capturing of plasticity effects, excellent numerical
efficiency and fast convergence are reported. Ziemian and McGuire
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[10] proposed a modified tangent modulus approach considering
residual stress and plastic hinge for second-order inelastic analysis.
Their method is simple and can be easily incorporated into conven-
tional stiffness-based beam-column elements, but the geometrical
imperfections are not included at element stiffness. Also, their
model requires calibration for selected cross-section subjected to
major or minor axis bending.

Extensive works have been done on flexibility-based (also
known as force-based) beam-column elements [11–15]. Neuen-
hofer and Filippou [12,13] made significant contribution on the
practical use of flexibility-based element with consideration of
material yielding and geometrical nonlinearity. The authors [13]
also proposed a curvature-based displacement interpolation (CBDI)
method to determine the transverse displacement of the element
using the kinematic relations and the curvatures at integration
points. To formulate element tangent stiffness and resisting forces,
an element state determination approach based on the Newton-
Raphson method was introduced in Ref. [13]. Nukala and White
[16] presented four state determination algorithms for geometric
and material nonlinear beam-column elements which follow the
two-field Hellinger-Reissner (HR) variational principle. De Souza
[14] developed beam-column elements for planar and spatial
frame analysis based on Hellinger-Reissner (HR) functional to
derive the weak form of equilibrium and compatibility equations.
With discretization of the frame section into a number of fibers
as well as insertion of numerical integration points along the mem-
ber, the flexibility-based elements are widely used for distributed
plastic analysis. It is noted that there is no flexibility-based ele-
ment proposed until recently for explicit consideration of member
geometrical imperfections and therefore, these previous elements
cannot meet the requirement of design codes such as Eurocode-3
[2] and CoPHK [17].

Fairly speaking, the stiffness-based elements show unique
superiority for geometric nonlinearity due to computational effi-
ciency and high accuracy while the flexibility-based elements are
suitable for material nonlinearity because of strict satisfaction of
force equilibrium at the element level. The stiffness matrix of
stiffness-based elements (e.g. Chan and Zhou [3] and Chan and
Gu [6]) can be directly obtained through exact integration while
the flexibility-based elements generally need to adopt numerical
integration (e.g. Neuenhofer and Filippou [13]) to form the flexibil-
ity matrix with complicated procedure for element state determi-
nation. Thus, it is clear that the flexibility-based element requires
more computational effort in forming stiffness matrix and comput-
ing unbalanced forces during the incremental-iterative nonlinear
solution.

The stiffness-based elements equipped with refined plastic
hinge technique [18] can generally handle the concentrated plas-
ticity at member ends or an additional plastic hinge along the
member length [4,5], and therefore they may give results of inad-
equate accuracy for more complicated plastic behavior of a mem-
ber under complex loading scenarios, for instance, several point
loads applied at the different locations of a member. Although
multi elements per member can alleviate this problem, the
approach brings inconvenience in modeling the member initial
imperfections and increase computer time and modeling efforts.

From the above, a flexibility-based beam-column element con-
sidering member imperfection (abbreviated to FBMI hereafter)
based on Hellinger-Reissner (HR) functional is useful for practical
uses of the element and proposed in this paper for second-order
direct analysis (SODA). This new element is extended from Neuen-
hofer and Filippou [13] by incorporating member initial bowing at
the element level for three-dimensional frame analysis. Fiber sec-
tion approach is adopted to account for the distributed plasticity
of a member. It is noted that many members may remain elastic
for practical structures under various design load cases as not all

members could be loaded to plastic range in a particular load case
attaining limiting deflection, structural integrity and architectural
requirements. Thus, it is recommended that the stiffness-based
elements and the new flexibility-based element can be used in
an integrated manner under the SODA design, in which the former
is adopted for modeling of the members under low stress level, and
the latter is used for the members under high stress. This inte-
grated treatment will significantly enhance computational effi-
ciency and therefore a more rational SODA method can be
developed for routine design. Several examples are employed to
validate the accuracy and efficiency of the proposed element along
this line of thought.

2. Element formulations

The proposed flexibility beam-column element (FBMI) is
extended from Neuenhofer and Filippou [13] by incorporating
member initial bowing at element level for three-dimensional
frame analysis. The warping and shear deformation are neglected
and the applied loads are assumed conservative, i.e. the loads are
increased proportionally and independent of the load path, and
nodal loads are assumed with distributed load or concentrated
load lumped to element end nodes.

The derivation of the proposed element will be summarized in
this section. To simplify the element formulations and improve
numerical efficiency, the new element is developed in the basic
coordinate system with six natural degrees of freedom. The kine-
matic hypothesis for the element is presented. The Hellinger-
Reissner (HR) functional is introduced to generate the equilibrium
and compatibility equations. The section constitutive relation and
the consistent flexibility matrix are described. The curvature-
based displacement interpolation (CBDI) technique [13] is adopted
to determine the displacements which are not explicitly assumed
as opposed to the conventional displacement-based elements.
Finally, the co-rotational approach is used to transform the stiff-
ness matrix defined in the basic coordinate system to the global
coordinate system so that the proposed element can be incorpo-
rated into the conventional finite element package directly.

2.1. Basic coordinate system

The proposed beam-column element with six element degrees
of freedom is formulated in the basic coordinate system with the
rigid body modes suppressed. Further, the stiffness matrix and
associated kinematic variables are transformed to the global coor-
dinate system such that each element node has six degrees of free-
dom (DOF), i.e. three translational and three rotational DOFs, as
seen in Fig. 1.

The element end forces P and the corresponding end displace-
ments D defined in basic system are given below,

P ¼ fP1P2P3P4P5P6gT ¼ fNMIzMJzMIyMJyTgT ð1Þ

D ¼ fD1D2D3D4D5D6gT ¼ fuhIzhJzhIyhJywgT ð2Þ

2.2. Kinematic hypothesis

On the basis of Bernoulli-Euler beam theory and ignoring warp-
ing effects, the displacement field of the space beam-column ele-
ment can be expressed as,

uðx; y; zÞ ¼
uxðx; y; zÞ
uyðx; y; zÞ
uzðx; y; zÞ
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