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a b s t r a c t

A weak-form quadrature element formulation is presented for the three-dimensional beam element for
use in the geometrically nonlinear and postbuckling analysis of space frames. Starting from the virtual
work equation of a beam in the linearized, incremental sense, the quadrature element method (QEM)
is employed to derive the elastic stiffness, geometric stiffness, and induced moment matrices of the beam
with due account taken of the large rotations in three-dimensional space. All the stiffness matrices are
adopted in the incremental-iterative analysis using the generalized displacement control (GDC) method,
with specific considerations for the predictor and corrector phases. By comparing the results obtained for
all the benchmark problems studied with existing ones, it is demonstrated that the present formulation is
capable of predicting large displacements and rotations, as well as the postbuckling paths of space
frames. The present formulation is featured by the fact that it is simple, straightforward, and reliable.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Geometrically nonlinear and postbuckling behaviors of space
frames have attracted widespread attention of researchers and
engineers over the past few decades due to the advancement of
engineering design. Developments of new formulation theories
and novel computer methods are two major aspects of the subject.
Yang et al. [1] has made a literature review concerning the various
aspects of geometrically and postbuckling analysis of space frames.
Besides the beam-column theory [2,3] from the perspective of con-
ventional structural mechanics, nonlinear continuum mechanics-
based beam theories [4] have gained more and more interest.

In general, two different formulations, i.e., the total Lagrangian
(TL) formulation and updated Lagrangian (UL) formulation, have
been commonly used for the derivation of beam elements [5].
The former describes the current unknown configuration of a beam
element based on the reference coordinates of the initial unde-
formed configuration, such as the geometrically exact beam theory
[6–10]; while the latter describes the current configuration of a
beam element based on the reference coordinates of the latest
known configuration. Yang et al. [11,12] have formulated an incre-
mental nonlinear beam theory based on the UL formulation.

Another formulation based on the co-rotational (CR) description
is worthy of special mentioning. Either a TL [13–16] or UL
[17,18] formulation can be employed for the CR formulation. The
CR formulation is capable of taking the initially non-straight con-
figuration of the element into account.

Because of the geometric nonlinearity, an incremental-iterative
analysis scheme is usually needed for the solution of space frames
under proportionally increasing loadings. The finite element
method (FEM) is used almost exclusively for solving the deforma-
tion of the structure in each iterative step. Previously, the Newton-
Raphson method, arc-length method, and some other variants,
have often been used for the incremental-iterative analysis of
structures. As for the postbuckling analysis of a structure, the key
concern is how to get around with the limit points, snap-back
points, and multi winding curves. The generalized displacement con-
trol (GDC) method proposed by Yang et al. [19–21] can deal with
all these problems in a self-adaptive manner. For this reason, it
has received a continuously increasing number of users due to its
appealing and reliable features for incremental-iterative analysis
[22].

Recently, a novel computational method, named as the weak-
form quadrature element method (QEM) [23], has been developed.
The QEM starts from the weak form description of the problem, so
it has the same wide applicability as the conventional FEM. With
the conventional FEM with displacement-based formulation, one
first converts the governing equations of an element to energy
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expressions, uses the shape functions to relate field parameters to
nodal parameters, and then integrates over the domain to obtain
the stiffness matrices. With the QEM, a different logistics is
adopted for the derivation of element stiffness matrices. It first dis-
cretizes the integrands in the weak-form expressions by the
Lagrange interpolation, and then approximates the differentiation
at a discrete node by the differential quadrature method (DQM)
[24]. The DQM approximates the differentiation of a function at a
given node by a weighted linear summation of the function values
at all discrete nodes in the domain. As a result, the QEM does not
require additionally constructing shape functions each time for
higher-order elements and the following derivation is quite
straightforward, reducing the formulation complexity.

Meanwhile, due to the feature of the QEM, the numbers of the
integration and differentiation nodes (they are the same set of
nodes which is different from the FEM) are not fixed and they
can be increased gradually to satisfy the convergence requirement.
The entire converging process can be programmed for execution
automatically, making the method having an inherent self-
adaptivity nature.

In this paper, the QEM, instead of the FEM, is employed to inves-
tigate the geometrically nonlinear and postbuckling behaviors of
space frames. In the FEM, choosing the proper form and order of
the shape functions has always been a concern. With the QEM,
however, the interpolation order can be increased easily and auto-
matically, and the required order can be determined by compar-
ison of results obtained with those of lower-order. Although
Zhong et al. [25,26] have used the QEM to study similar problems,
their formulations are based on the TL formulation of the geomet-
rically exact beam theory in combination with the conventional
Newton-Raphson iterative method. In the present work, the UL
formulation-based incremental nonlinear beam theory in conjunc-
tion with the GDC method, both are proposed by Yang et al., is to
be adopted. This formulation enjoys the benefits of simplicity,
straightforwardness, and reliability.

2. Formulation

2.1. Incremental virtual work equation

The QEM starts from the weak-form description of a system, so
an energy expression, instead of a governing differential equation
of motion, of the geometrically nonlinear beam element needs to
be formulated first. By selecting the latest known configuration
as the reference configuration, a general incremental equation of
equilibrium in a linearized sense derived from the virtual work
principle is given by [5,11]

dU þ dV ¼
Z
X
CijklekldeijdXþ

Z
X
sijdgijdX ¼ 2R� 1R ð1Þ

where d denotes the variation, U is the strain energy, V is the poten-
tial energy of the initial stresses existing on the element at the latest
known configuration, X denotes the volume of the latest known
configuration, Cijkl is the constitutive coefficient, sij is the Cauchy
stress, eij and gij are the linear and nonlinear components of the cor-

responding Green-Lagrange strain increment, and 1R and 2R are the
virtual works done by the nodal forces acting on the element at the
latest known and current configurations, respectively. According to
the nonlinear continuum mechanics, eij and gij are defined by

eij ¼ 1
2

@ui

@xj
þ @uj

@xi

� �
ð2Þ

gij ¼
1
2

@uk

@xi

@uk

@xj

� �
ð3Þ

where ui is the displacement increment and xi is the coordinate of
the element at the latest known configuration.

For the three-dimensional rectangular beam element shown in
Fig. 1, the displacements ðu1;u2;u3Þ of a generic point can be
related to the displacements ðu;v ;wÞ of the centroid of the same
section as follows [11]:

u1 ¼ u� yv 0 � zw0 ð4Þ

u2 ¼ v � zhx ð5Þ

u3 ¼ wþ yhx ð6Þ
where hx is the torsional angle. The superscript ‘‘prime” indicates
the first-order partial differentiation with respect to the x-axis.

Substituting Eqs. (4)–(6) and the constitutive relation for elas-
ticity into Eqs. (1)–(3), the variation of the strain energy, U, can
be expressed as [11]

dU ¼ 1
2

Z L

0
EAdu02 þ EIzdv 002 þ EIydw002 þ GJdh02x
� �

dx ð7Þ

where L is the beam length, A is the cross-sectional area, E is the
Young’s modulus, G is the shear modulus, Iy and Iz are the area
moments of inertia about the y- and z-axis, respectively, and J is
the torsion constant. The superscript ‘‘double prime” indicates the
second-order partial differentiation with respect to the x-axis.

The potential energy, V , of the initial stresses acting on the ele-
ment at the latest known configuration is contributed by four com-
ponents, namely, the axial force 1Fx, shear forces 1Fy and 1Fz,
bending moments 1My and 1Mz, and torsional moment 1Mx. There-
fore, the variation of the potential energy, dV , can be divided into
four parts as follows:

dV ¼ dV1 þ dV2 þ dV3 þ dV4 ð8Þ
where

dV1 ¼ 1
2

Z L

0

1Fxd u02 þ v 02 þw02� �þ 1Fx
Iz
A
dv 002 þ Iy

A
dw002

� ��

þ 1Fx
Iy þ Iz
A

dh02x

�
dx ð9Þ

dV2 ¼
Z L

0

1Fyd w0hx � u0v 0ð Þ � 1Fzd v 0hx þ u0w0ð Þ� 	
dx ð10Þ

dV3 ¼
Z L

0
�1Mzd w0h0x

� �� 1Myd v 0h0x
� �� 1Myd u0w00ð Þþ 1Mzd u0v 00ð Þ� 	

dx

ð11Þ

dV4 ¼ 1
2

Z L

0

1Mxd v 00w0ð Þ � 1Mxd v 0w00ð Þ� 	
dx ð12Þ

The virtual works 1R and 2R denote the products of the nodal
forces and their corresponding virtual displacements. After dis-
cretizing the beam element by N nodes, as shown in Fig. 1, they
can be expressed as

2R� 1R ¼ ddTð2f � 1fÞ þ dW ð13Þ

Fig. 1. Coordinate system and discretization of a beam element.
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