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a b s t r a c t

In this study on a long-span suspension bridge, the wind and vibration data collected by a long-term
monitoring system from the year 2010 to 2014 are used for cluster analysis. An automatic and fast clus-
tering algorithm is employed to recognize the vortex-induced vibrations (VIVs) on the bridge deck in
long-term monitoring datasets. The acceleration amplitude (root mean square) and frequency ratio are
selected as indicators for the clustering of the VIVs from other vibrations. Cluster analysis is further con-
ducted on the wind speed field of VIV samples, and the results indicate that the nonuniformity of the
wind speed along the span-wise direction has a significant influence on the VIV mode. The relationship
between the wind speed field and VIV mode is obtained by the clustering with consideration of nonuni-
formity of the wind speed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of long-span cable-supported bridges have been
or are being constructed to link the mainland to islands or to link
islands to islands all over the world. As the span increases, the
bridge becomes more flexible and has reduced damping capability.
Therefore, bridges subjected to the wind are more frequently
observed to have dramatic oscillations. The vortex-induced vibra-
tion (VIV) of the bridge deck is one of the representative wind-
induced vibrations, which was observed in many bridges such as
Great Belt Bridge (Larsen et al, 2000 [1], Frandsen, 2001 [2]), Tokyo
Bay Bridge (Fujino and Yoshida, 2002 [3]), Xihoumen Bridge (Li
et al, 2011 [4]) and so on. Although the VIV of the bridge deck is
a vibration with a limited amplitude, which does not cause a brittle
collapse, it can result in large displacements and discomfort to dri-
vers. Moreover, the VIVs commonly occur within the low wind
speed region; therefore, the occurrence probability of a vortex-
induced vibration is relatively high, and this results in long-term
fatigue damage.

Wind tunnel tests, computational fluid dynamic numerical
simulations and field monitoring are the three most powerful

tools to study the VIVs of bridges. As modern measurement and
structural health monitoring technologies improve, field monitor-
ing plays a critical role in investigating the wind-induced vibra-
tion behavior of bridges and has been attracting more and more
attention from researchers. Larsen et al. (2000 [1]) have observed
the VIVs of the Great Belt East Bridge during the final phases of
deck erection, and guide vanes are designed and implemented
to mitigate the VIVs of the Great Belt East Bridge. Frandsen
(2001 [2]) has simultaneously measured the wind pressure and
acceleration of the Great Belt East Bridge. During the field moni-
toring period, VIVs of the Great Belt East Bridge are observed. It is
found that the crosswind VIVs of the Great Belt East Bridge
occurred during a smooth flow of low wind speeds (approxi-
mately 8 m/s) with a direction nearly perpendicular to the bridge
axis. The characteristics of the wind pressure on the surface are
obtained, and the correlation between the span-wise pressures
become large when a VIV is occurring. Fujino and Yoshida
(2002 [3]) have observed that the first vertical VIV mode of a
ten-span continuous single steel box-girder bridge (i.e., the
Trans-Tokyo Bay Crossing Bridge) occurs with a wind direction
within ±20� to the transverse axis of the bridge and a wind veloc-
ity of approximately 16–17 m/s. To suppress the vertical mode
vibrations of the bridge, a new type of tuned mass damper
(TMD) is implemented in the girder. Li et al. (2011 [4], 2014
[5]) have investigated the VIVs of a long-span suspension bridge
with a twin-box girder based on long-term field monitoring data.
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In [4,5], the surface pressure distributions of the full-scale bridge,
the flow characteristics around the twin-box girder, the vortex
shedding frequency, the dynamic responses of the VIVs and the
corresponding wind conditions and the mechanism between the
VIV and the twin-box girder are discussed in detail. In addition,
the field monitoring results are compared using an 1:25 sectional
model test. The comparison of the results shows that the section
model had higher suction than the full-scale bridge in the separa-
tion region, and the Strouhal number is smaller. However, the
recognition of VIVs in a measured dataset is manual by choosing
samples with larger vibration amplitude than a threshold and
then checking the PSD of the acceleration response. The determi-
nation of the threshold and the checking rule are very empirical,
which is likely to result in wrong recognition. Furthermore, this
procedure takes heavy labor cost and efficiency for selecting VIVs
is very low. Chen (2013 [6], 2014 [7], [8]) have investigated the
crosswind response of tall buildings and flexible structures at
wind speed region higher than the vortex lock-in speed, and
the Gaussian or non-Gaussian process feature, the peak factor
and kurtosis are employed as indicators to distinguish the VIV
and buffeting. However, the threshold for distinguishing VIV
and buffeting obtained by different researches is different.

In recent decades, the structural health monitoring systems
(including the wind and wind effects monitoring systems) have
been implemented in many long-span bridges across the world,
especially in China (Ko and Ni, 2005 [9]; Li et al, 2006 [10];
Azarbayejani, et al, 2009 [11]; Jang et al, 2010 [12]; Ou and Li,
2010 [13]). The systems provide a great opportunity to investigate
the wind characteristics and effects on real bridges based on long-
term field monitoring data. Faced with a massive amount of data,
how to identify a typical wind-induced vibration and how to utilize
data mining to gain new knowledge are two urgent issues for
investigating the wind-induced vibrations based on the field
monitoring.

In this paper, cluster analysis is adopted to identify the VIVs of
the bridge deck and to investigate the relationship between the
frequency (mode) of VIVs and the wind speed field. The cluster
analysis, which organizes a collection of unlabeled patterns (usu-
ally represented as a vector of observations or as a point in a mul-
tidimensional space) into clusters based on similar properties, is a
powerful tool for exploratory pattern analysis, decision making,
and data mining. The variety of techniques for representing data,
measuring proximity (similarity) between data elements and
grouping data elements have produced a rich assortment of clus-
tering methods. These methods can be broadly classified into four
categories: centroid-based (partitioning) methods, connectivity-
based (hierarchical) methods, distribution-based methods and
density-based methods.

The k-means method (MacQueen, 1967 [14]) is the simplest and
most commonly used partitioning algorithm. This method parti-
tions n data points into k clusters, in which each observation
belongs to a cluster with the nearest mean, by minimizing the
sum of the Euclidean distance between each data point. The k-
means method is relatively scalable and efficient for clustering
large data sets because the computational complexity of the algo-
rithm grows linearly with the number of data points. However, like
other partitioning methods, the k-means method requires some
domain knowledge (which unfortunately is not available for many
applications) to determine the number of clusters. In addition, the
shape of all clusters found by a partitioning method is convex,
which is very restrictive.

Hierarchical methods (Sibson, 1973 [15]; Defays, 1977 [16])
create a hierarchical decomposition of the dataset. The hierarchi-
cal decomposition is represented by a dendrogram, a tree that
iteratively splits the dataset into smaller subsets until each

subset consists of only one object. In such a hierarchy, each node
of the tree represents a cluster of the dataset. In contrast to the
partitioning algorithms, the hierarchical algorithms do not
require the number of clusters to be identified beforehand. How-
ever, a termination condition has to be defined that indicates
when the merge or division process should be terminated.
Unfortunately, hierarchical clustering is suffering a challenge in
deriving the appropriate parameters for the termination
condition.

In the distribution-based methods, the underlying assump-
tion is that the patterns to be clustered are drawn from one
of several distributions, and the goal is to identify the parame-
ters of each and the number of clusters. One prominent method
is known as the Gaussian mixture model. Traditional approaches
to this problem involve obtaining (iteratively) a maximum
likelihood estimate of the parameter vectors of the component
densities (Jain and Dubes, 1988 [17]). Recently, the
expectation-maximization (EM) algorithm has been applied to
the problem of parameter estimation (Mitchell, 1997 [18]). The
distribution-based clustering methods produce complex models
for the clusters that can capture the correlation and dependence
between the attributes (features). However, for many real data-
sets, there may be no concisely defined mathematical model
(e.g., assuming a Gaussian distribution is a rather strong
assumption about the data).

More recently, density-based clustering, in which clusters
with an arbitrary shape can be easily detected, is proposed
(Ester, 1996 [19]). In the density-based spatial clustering of
applications with noise (DBSCAN) method, one chooses a density
threshold, discards as noise the points in regions with densities
lower than this threshold, and assigns to different clusters
disconnected regions of high density. However, choosing an
appropriate threshold can be nontrivial, and finding cluster cen-
ters is computationally costly. Fortunately, Rodriguez and Laio
(2014) [20] proposed a novel clustering algorithm that uses fast
searching. The algorithm finds density peaks based on the idea
that the cluster centers are characterized by a higher density
than their neighbors and a relatively large distance from other
points with higher densities.

In this paper, the 5-year long-term monitoring data from year
2010 to 2014 on the investigated bridge are selected for analysis.
The organization of this paper is as follows: First, cluster analysis
is proposed to identify the vortex-induced vibrations (VIVs) of
the bridge deck. Second, the cluster analysis is employed to inves-
tigate the potential relationship between the wind speed field and
the frequency (mode) of VIVs.

2. Clustering algorithm

The clustering algorithm proposed by Rodriguez and Laio
(2014) [20] is employed for identifying the vortex–induced vibra-
tion of the bridge deck in a large amount of monitoring data in this
study. In this clustering method, two quantities are calculated for
each data point i: the density qi and the distance di (from data
point i to the nearest point of higher density). The local density
qi of data point i is defined as

qi ¼
X
j

vðdij � dcÞ

vðxÞ ¼ 1 if x < 0
0 otherwise

� ð1Þ

where dij is the distance between data point i and j, and dc is a cutoff
distance. vð�Þ is a step function, if the distance dij between data
point i and j is smaller than the cutoff distance dc , vðdij � dcÞ is equal

246 S. Li et al. / Engineering Structures 138 (2017) 245–259



Download English Version:

https://daneshyari.com/en/article/4920328

Download Persian Version:

https://daneshyari.com/article/4920328

Daneshyari.com

https://daneshyari.com/en/article/4920328
https://daneshyari.com/article/4920328
https://daneshyari.com

