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a b s t r a c t

Structural optimization has been shown to be an efficient and effective method to obtain the optimal
design balancing competing objectives. However, literature on optimization of structures subject to ran-
dom excitation is sparse. This study proposes a performance-based optimization approach for nonlinear
structures subject to stochastic dynamic excitation. The optimization procedure is formulated as a multi-
objective problem considering various performance objectives. The excitation is modeled as a zero-mean
filtered white noise and combined with the nonlinear equations of motion of the structure to create an
augmented state space representation of the system. The optimization objectives are defined in terms
of the variance of stationary structural responses, which are obtained via equivalent linearization.
Thus, the stochastic optimization problem is converted into its deterministic counterpart. Numerical
examples are provided to demonstrate the efficacy of the proposed approach. Three levels of seismic
magnitudes, i.e., low-level, frequent earthquake, medium-intensity earthquake and high-intensity earth-
quake, are investigated. For each seismic magnitude, two performance objectives are considered. The first
performance objective considers serviceability, seeking to minimize floor acceleration response; and the
second performance objective considers structural safety and seeks to minimize interstory drift response.
The Pareto optimal fronts are calculated to illustrate the intrinsic tradeoffs between serviceability and
safety of designs subject to all seismic magnitudes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional trial-and-error structural design methods rely
mainly on experience and experimental observation, which cannot
guarantee an optimal solution [1]. Structural optimization has
been shown to be an efficient and effective method to balance
competing design objectives. While many of the loads considered
in structural design are stochastic and dynamic in nature, e.g.,
wind and seismic excitation, most of the research on structural
optimization focuses on static loads or represents dynamic excita-
tions by equivalent static loads [2,3].

Previous research on structural optimization subject to stochas-
tic loading has been conducted using Monte Carlo simulation
(MCS) [4,5]. Time history analysis can describe structural behavior
in time domain. However, a major drawback of the MCS is that
structural optimization usually requires numerous simulations to
get converged response statistics. Structural optimization

employing MCS can be prohibitively time consuming and compu-
tationally demanding.

Several researchers have conducted structural optimization
applying random vibration theory. Jensen and Sepulveda [6] used
a modal-based approach to optimize element sizes for a linear
five-story shear structure subject to stochastic seismic ground
motion. Jensen [7] continued this study carrying out structural
optimization with deterministic linear dynamic systems. Then Jen-
sen [8] extended the study to nonlinear structures using equivalent
linearization. More recent attention by other researchers [9,10]
focused on structural optimization subject to stochastic seismic
and wind excitation. The main limitation of these studies, however,
is that only drift minimization (i.e., structural safety) is considered,
while other competing performance indicators (e.g., serviceability)
are ignored.

A large body of literature has been published on performance-
based design (PBD) since Krawinkler [11] first proposed this con-
cept. Compared with traditional structural design methods, PBD
obtains explicit evaluation of structural responses subject to pre-
defined performance objectives. Structural performances are often
divided into two main categories: safety and serviceability. By
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combining different safety and serviceability requirements, design
tradeoffs can be assessed. Within plethora of response parameters,
interstory drift and acceleration are most frequently considered
[12]. Interstory drift response is related to damage level, i.e., safety,
and acceleration is often related to serviceability [13].

Structural optimization was applied to PBD [14–16] soon after
the PBD method was proposed, and the concept was referred as
performance-based optimization (PBO). PBO focuses on obtaining
optimum structural designs considering different performance
objectives, which can provide a valuable reference for the design-
ers. The PBO design is mainly conducted for earthquake engineer-
ing [12,17], but recent research efforts have applied this concept
for other design loadings [9,14,18]. Nevertheless, structural opti-
mization subject to stochastic dynamic loading in the PBO perspec-
tive appears to be lacking in the literature.

This study proposes a PBO procedure for nonlinear structures
subject to stochastic dynamic excitation, which is formulated as
a multi-objective optimization problem. The excitation is modeled
as a zero-mean filtered white noise and creates an augmented state
space representation of the system combining with the nonlinear
equations of motion of the structure. The optimization objectives
are defined in terms of the variance of stationary structural
responses. Illustrative examples are presented for three levels of
seismic excitation, representing frequent, medium-intensity and
high-intensity earthquakes. For each seismic magnitude, structural
safety and serviceability are examined, and the Pareto optimal
front is employed to illustrate the tradeoff between the two com-
peting objectives. These results demonstrate the efficacy of the
proposed PBO approach.

2. Problem formulation

This section presents the formulation of the proposed PBO pro-
cedure. The nonlinear structure is cast into the first-order ordinary
differential equations and subsequently linearized. The structure is
excited by a stationary filtered white noise representing stochastic
excitation. Structural parameters are referred as the design vari-
ables. The optimization objectives are defined in terms of perfor-
mance indicators, which are represented by stochastic structural
responses (function of design variables).

2.1. Structural model description

Considering hysteretic behavior, the equation of motion (EOM)
of a N-degree of freedom (NDOF) nonlinear system is given by

M€dþ C _dþ rðtÞ ¼ GpðtÞ ð1Þ
whereM is the mass matrix; C is the linear damping matrix; d is the
interstory drift vector between consecutive floors; rðtÞ represents
the restoring force vector; pðtÞ is the input excitation vector; and
G is a matrix coupling the excitation dimension and the structural
DOFs. Note that although the vector rðtÞ and pðtÞ are represented
by the time domain symbol in Eq. (1), MCS is not required; rather,
this study proposes an analytical procedure to determine the
second-order response statistics that are used in the optimization
procedure.

In this study, the Bouc-Wen model [19,20] is adopted to
describe the hysteretic restoring force, rðtÞ, i.e.,
rðtÞ ¼ aKdþ ð1� aÞKdyzðtÞ ð2Þ
where a is the rigidity ratio, i.e., the post- to pre-yield stiffness
ratio; K is the linear stiffness matrix; dy is the yield drift; and zðtÞ
is an evolutionary vector representing the hysteretic component
of the restoring force. The evolutionary variable associated with
the ith story, zi, can be described by the differential equation [21]

_zi ¼ 1
dy

�cj _dijjzijn�1zi � b _dijzijn þ A _di

� �
ð3Þ

where A, c and b are the shape coefficients of the hysteresis loop. n
governs the smoothness of the transition part from elastic to plastic
response. di is the interstory drift of the ith story. For more informa-
tion about the use of the Bouc-Wen model to represent nonlinear
structural response, the reader is directed to the following reference
[22–24].

Combining Eqs. (1) and (2), the EOM becomes

M€dþ C _dþ aKdþ ð1� aÞKdyzðtÞ ¼ GpðtÞ ð4Þ
To fit the state space formulation and determine the stochastic

responses, the structural system must be linearized. Eq. (4) is
already linear equation, so only the equation governing the evolu-
tionary vector z (Eq. (3)) needs to be linearized, which is given by

_zþ Ceq
_dþ Keqz ¼ 0 ð5Þ

where Ceq and Keq are the linearized coefficient matrices. Assuming
a zero-mean stationary Gaussian excitation and an EOM satisfying
smoothness requirements, the mean square error is minimized
when conducting equivalent linearization of the evolutionary vec-
tor to yield [21,25,26]

Keq;ij ¼ E
@ri
@dj

� �
; Ceq;ij ¼ E

@ri
@ _dj

" #
ð6Þ

where E½�� is the expectation operator. The equivalent linear matri-
ces Ceq and Keq for the Bouc-Wen model were evaluated in [21,25].
For n ¼ 1, when i ¼ j,

Ceq;ii ¼ 1
dy

cE zi
@j _di j
@ _di

h i
þ bE½jzij� � A

� �
Keq;ii ¼ 1

dy
cE j _dij

h i
þ bE½ _di

@jzi j
@zi

�
� � ð7Þ

When i– j, Ceq;ij ¼ 0 and Keq;ij ¼ 0. The equivalent linear

responses, _di and zi, are jointly Gaussian subject to Gaussian exci-
tation, and the matrices Ceq and Keq can be evaluated in terms of

the second moments of _d and z [21], i.e.,

Ceq;ii ¼ 1
dy

ffiffiffi
2
p

q
c E½ _dizi �

r _di

þ brzi

� �
� A

� �

Keq;ii ¼ 1
dy

ffiffiffi
2
p

q
cr _di

þ b E½ _dizi �
rzi

h i� � ð8Þ

where rð�Þ represents the standard deviation. Note that Eq. (8) is
the expression for the special case of n ¼ 1. Expression for more
general cases (n– 1) are also reported by [21].

2.2. State space formulation

Defining a state vector xs as

xs ¼ dT _dT zT
� �T

ð9Þ

then the equivalently linearized structure can be modeled as

_xs ¼ Asxs þ BspðtÞ
ys ¼ Csxs þ DspðtÞ

ð10Þ

where ys is the response vector; As and Bs are the state space matri-
ces, which can be written as

As ¼
0 I 0

�aM�1K �M�1C �ð1� aÞdyM
�1K

0 �Ceq �Keq

2
64

3
75; Bs ¼

0
M�1G
0

2
64

3
75
ð11Þ
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