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a b s t r a c t

Most of the existing damage detection methods focused on damage along members of the structure with-
out considering possible damage at its connections. Under the Bayesian framework, the finite element
(FE) model reduction technique and the system mode concept, this paper presents a practical method
for structural bolted-connection damage detection using noisy incomplete modal parameters identified
from limited number of sensors. Based on the incomplete modal identification results, the most probable
structural model parameters, the most probable system eigenvalues and partial modes shapes together
with the associated uncertainties can be identified simultaneously. There are several significant features
of the proposed method: (1) it does not require computation of the system mode shapes for the full
model due to the FE model reduction technique; (2) matching between measured modes and model pre-
dicted modes is avoided in contrast to most existing methods in the literature; and (3) an efficient iter-
ative solution strategy is also proposed to resolve the difficulties arisen from the high-dimensional
nonlinear optimization problem for the structural model parameters and the incomplete system modal
parameters. Numerical simulations and experimental verifications of a four-storey two-bay bolt-
connected steel frame and a two-storey laboratory bolted frame, respectively, are utilized to demonstrate
the validity and efficiency of proposed methodology.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, there has been great effort in devel-
oping structural health monitoring (SHM) methodologies utilizing
vibration measurements [1,2]. Most of the methods in the litera-
ture have been verified by various types of structural components
or systems, such as truss-type structures [3–5], beam-type struc-
tures [6–9], railway sleepers [10,11], plates [12–15], frame struc-
tures [16–19], and shear building models [20–24]. The majority
of these mentioned damage detection methods are based on modal
parameters, where an objective function is usually defined in terms
of the discrepancies between the experimental modal parameters
and those calculated from a FE model by assuming that the influ-
ence of damage on structural mass can be neglected, and it is then
minimized for the estimation of the stiffness parameter changes.
However, this type of damage identification procedures generally

requires solving the eigensystem equation repeatedly to compute
the model output and the objective function at least once for each
iteration step, which is extremely time-consuming especially for
large-scaled structural models. In addition, in the formation of
the above objective function, it is necessary to ensure that the mea-
sured modes are matched well with the calculated ones by using
the modal assurance criterion (MAC) technique but it is difficult
in real application due to limited number of measured degrees of
freedom (DOFs). Moreover, since damage might cause changes in
the order of the modes, such mode matching becomes even more
difficult.

For this reason, some methods have been proposed to avoid the
above-mentioned mode matching problem by introducing the con-
cept of system mode shapes, which is distinct from those calcu-
lated from the structural model specified by some given model
parameters. Some of these methods employ Rayleigh quotient fre-
quencies, which are derived from the structural model and the sys-
tem mode shapes, to avoid repeatedly solving the eigensystem
equation during damage detection process. Then, the structural
model parameters and the system mode shapes are identified
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simultaneously [20,25,26]. Later, an improved method has been
proposed so that the system eigenvalues are also included as addi-
tional unknown parameters to be identified based on the incom-
plete modal data besides of the system mode shapes in order to
represent the actual modal frequencies of the structural system
[27,28].

It is noted that, in the above-mentioned methods utilizing the
concept of system modes, the system mode shapes with respect
to the full structural models are required. In real situations, mode
shapes are usually measured with incomplete components or
missing DOFs. In order to resolve the difficulties arisen from
the limited number of measurement channels, the methods usu-
ally start from computing the missing components of the mode
shapes through mode shape expansion procedure [27]. However,
it has been revealed that this would aggregate the modeling
error, experimental noise and other sources of uncertainties into
the resultant mode shapes [29,30], affecting substantially the
damage detection results. On the other hand, the dimension of
full system mode shapes and, thus, the number of the unknown
parameters becomes extremely large, resulting in unreliable or
even unidentifiable damage detection results especially for
large-scaled structures. In such circumstances, the FE model
reduction method originally developed for the purpose of reduc-
ing the computation effort for large-scaled structural models [31–
34], particularly for the dynamic-reduction method [34], becomes
a more practical alternative since it does not introduce any error
in the transformation process within a certain frequency range
[35,36]. Using the dynamic model reduction technique, the
unknown full system mode shapes correspond only to the con-
densed structural model so the dimension of the inverse problem
could be significantly reduced, especially efficient for large-scaled
complex structural models with a huge number of DOFs.

On the other hand, majority of existing damage detection
methods concentrated on damage along members of the struc-
ture without consideration of connection damages, which fre-
quently occur in structural frames. In this paper, by
acknowledging this importance and the aforementioned difficul-
ties, the system mode based damage detection method [27,28]
is improved by involving the efficient dynamic model reduction
based method [35,36] to become a more practical and workable
method to detect structural connection damage for frame-type
structures. The proposed method can handle the real situations
with very limited number of sensors available and has the partic-
ular potential for large-scaled complex structures due to the
model reduction strategy. In the proposed method, the uncer-
tainty issues associated with the unknown structural model
parameters and system modal parameters are well treated by
the Bayesian probabilistic approach. In addition, the FE model
reduction technique is also utilized to construct the prior PDF
of the incomplete system modal parameters by evaluating the
compatibility of the system modal parameters to the reduced
structural model.

One of the most attractive features of the proposed methodol-
ogy is that the identification of full system mode shapes and,
hence, mode matching are completely avoided. Furthermore, an
efficient iterative solution method is also presented to solve the
optimization problem for the most probable values of the struc-
tural model parameters and the incomplete system modal param-
eters. After presenting the theoretical development in detail, the
proposed methodology is validated and demonstrated thoroughly
by a comprehensive set of numerical case studies of a four-storey
two-bay bolt-connected steel frame and experimental verification
of a laboratory two-storey bolted frame with both single- and
double-damage situations.

2. Theoretical developments

2.1. Dynamic reduction of the eigen-system equations

Consider a class of structural models M discretized by FE
method into N DOFs. Assuming that the change of mass matrix
due to possible damage is negligible, the corresponding eigen-
system equation is thus given by:

KðhÞ/j ¼ kjM/j ð1Þ
where kj, /j 2 RN, j = 1, 2, . . . , Nt, are the jth eigenvalue and eigenvec-
tor, respectively. Nt is the number of measured modes. The global
stiffness matrix K(h) is parameterized by the stiffness scaling
parameter vector h ¼ ½h1; h2; . . . ; hNh

�T 2 RNh :

KðhÞ ¼ K�
XNh

i¼1

hiKðiÞ ð2Þ

where the stiffness scaling parameters h allow the nominal stiffness
matrix given by h = h0 in Eq. (2) to be updated based on the identi-
fied modal parameters from the structure. K(i), i = 1, 2, . . . , Nh is the
contribution of the ith member or substructure to the global stiff-
ness matrix of the FE model; and Nh is the number of unknown stiff-
ness scaling parameters to be identified.

By using Eq. (2), Eq. (1) can be rearranged to partition the mea-
sured and unmeasured DOFs as follows:

Kmm�PNh
i¼1hi½KðiÞ�mm Kms�

PNh
i¼1hi½KðiÞ�ms

Ksm�PNh
i¼1hi½KðiÞ�sm Kss�

PNh
i¼1hi½KðiÞ�ss

" #
f/mgj
f/sgj

( )

¼ kj
Mmm Mms

Msm Mss

� � f/mgj
f/sgj

( )
ð3Þ

where {/m}j and {/s}j are the measured and unmeasured parts of
full mode shape /j for the jth mode, with dimensions Nm and Ns,
respectively, and Nm + Ns = N.

The lower portion of Eq. (3) can be rewritten as:

f/sgj ¼ Djf/mgj ð4Þ
and

Dj ¼ �F�1
j Gj ð5Þ

where Dj is the dynamic reduction matrix for the jth mode, and it is
the function of eigenvalue kj and the stiffness scaling parameters h,
and

Fj ¼ Kss �
XNh

i¼1

hi½KðiÞ�ss � kjMss

Gj ¼ Ksm �
XNh

i¼1

hi½KðiÞ�sm � kjMsm

ð6Þ

Thus, for the jth mode, the full mode shape can be represented
only by the corresponding measured part as

f/mgj
f/sgj

" #
¼ INm

Dj

� �
f/mgj ¼ Tjf/mgj ð7Þ

where Tj 2 RN�Nm is the transformation matrix of the jth mode, and
INm is the Nm � Nm identity matrix.

Substituting Eq. (7) into Eq. (3), and pre-multiplying transpose
of Tj to the both sides of the resultant equation set, the eigen-
system equation of the reduced FE model corresponding to the
Nm measured DOFs is obtained:

KR
j f/mgj ¼ kjM

R
j f/mgj ð8Þ
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