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a b s t r a c t

This paper is concerned with the shape optimization problem of columns for a given volume and length
against buckling by using the discrete link-spring model or the so-called Hencky bar-chain model (HBM).
This discrete beam model comprises a finite number of rigid segments connected by frictionless hinges
and rotational springs. In particular, the rotational spring stiffness of HBM is a function of the square of
cross-sectional area of columns with regular polygonal or circular cross-sectional shape. Therefore, the
design of optimal rotational spring stiffnesses of a HBM allows one to obtain the optimal shape of a col-
umn provided that the assumed number of springs is sufficiently large. The present formulation of HBM
for column optimization is prompted by some discrepancies in the volume calculations and the specifi-
cation of the spring stiffness at the clamped end in Krishna and Ram (2007) discrete link-spring model
formulation. By using the correct formulation and the semi-analytical method proposed by Krishna
and Ram (2007), we determine the optimal shape of clamped-free, pinned-pinned, clamped-spring-
supported columns. In addition, we extend the semi-analytical method to optimize the shape of
clamped-free columns under distributed loads. Also presented herein are exact buckling solutions for
the uniform HBM under axial load and selfweight as well as the non-uniform HBM under axial load with
a specific class of spring stiffnesses.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Proposed by Hencky [2], the so-called Hencky bar-chain model
(HBM) discretizes the continuum Euler-Bernoulli beam into a finite
number of rigid beam segments that are connected by frictionless
hinges and rotational springs. The rotational springs are introduced
to take care of the flexibility of beams. For a prismatic beam, the
spring stiffness is C = EI/a, where EI is the flexural rigidity of the
beam and a the segmental length. This formula can be readily
obtained from the moment-curvature relationship. The advantage
of HBM lies in the convenience for determining beam solutions
by solving a set of algebraic equations instead of the differential
governing equation.

In 1951, Salvadori [3] published a paper detailing how to use
the central finite difference method for solving buckling problems

of beams, plates and shells. In a discussion paper, Silverman [4]
pointed out that the HBM is mathematically identical to the finite
difference model (FDM) provided that the segmental length of
the former model is made equal to the nodal spacing of the latter
model. This equivalence was later proved by Leckie and Lindberg
[5] for beam vibration problems. Based on this equivalence, Wang
et al. [6] found that the end rotational spring stiffness CR of HBM
should take a form as CR = 2C/(1 + 2C/KR) where KR is the actual
rotational spring stiffness for the beam elastic ends. Therefore,
it is clear that CR = (0, 2C) correspond to KR = (0, 1), where the
bracketed values represent free rotation and no bending rotation,
respectively. Hencky [2] also pointed out that the rotational
spring stiffness of HBM should be 2C at the clamped end and
this point was confirmed by El Naschie [7]. In fact, the HBM
has an advantage over the FDM in that the HBM does not have
any fictitious joints and each joint of HBM has a clear physical
meaning.

Recently, HBM was further developed to handle the buckling
problems of non-uniform columns [8], prismatic columns under
selfweight [9] and the buckling and vibration problems of non-

http://dx.doi.org/10.1016/j.engstruct.2017.01.011
0141-0296/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: zhanghong@u.nus.edu (H. Zhang), cm.wang@uq.edu.au

(C.M. Wang), noel.challamel@univ-ubs.fr (N. Challamel), Eugenio.RUOCCO@
unina2.it (E. Ruocco).

Engineering Structures 136 (2017) 87–99

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2017.01.011&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2017.01.011
mailto:zhanghong@u.nus.edu
mailto:cm.wang@uq.edu.au         
mailto:noel.challamel@univ-ubs.fr
mailto:Eugenio.RUOCCO@    unina2.it
mailto:Eugenio.RUOCCO@    unina2.it
http://dx.doi.org/10.1016/j.engstruct.2017.01.011
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


uniform columns resting on partial Winker foundation [10]. In
addition to solving continuum beam problems, one promising
application of HBM is for analysis of articulated beams or beam
structures with repetitive cells, such as railroad tracks, pavements,
pontoon type bridges or spacing structures comprising many mod-
ules [11]. This is because HBM is a natural model for such afore-
mentioned structures. A HBM planar grid may also be used to
model 2D planar structures [12–15]. Another interesting applica-
tion of HBM is that it could be used to calibrate Eringen’s small
length scale coefficient due to the phenomenological similarities
between the HBM and the Eringen’s nonlocal beam model. This
application was studied in papers [9,16–24].

Naturally, one questions whether the HBM can be used to opti-
mize the shape of columns? The history of optimal design of col-
umns for a given volume and length against buckling begins with
Lagrange’s unsuccessful attempt in 1773 [25,26]. The correct opti-
mization for a simply-supported column with circular cross-
section was formulated by Clausen [27]. Keller [28] later obtained
the analytical optimal solution for the simply-supported column
with arbitrary convex cross-section. The analytical solutions for
columns with clamped-clamped, clamped-free and clamped-
pinned ends were further obtained by Tadjbakhsh and Keller
[26]. However, Olhoff and Rasmussen [29] found that the optimal
buckling loads may be bimodal or unimodal, which is dependent
on the value of the prescribed minimal cross-sectional area of col-
umns with clamped ends. More recent papers on column optimiza-
tion were written by Gil-Martín et al. [30], Maalawi [31],
Novakovic and Atanackovic [32], Polajnar et al. [33], Bochenek
and Tajs-Zielińska [34], Wang et al. [35].

The shape optimization for columns using HBM (or discrete
link-spring model) was first studied by Prager and Prager [36]. In
their paper, they only used five rigid segments to model the col-
umn and considered the constraint that the sum of internal rota-
tional spring stiffnesses is a constant. More recently, Krishna and
Ram [1] optimized the shape of columns using HBM with more
segments and considered the volume constraint that requires the
sum of the square root of the stiffnesses be kept as a constant.
Krishna and Ram [1] proposed a semi-analytical method which
allows the cross-sectional areas at the spring locations to be deter-
mined analytically without any prescribed function for the area
variation along the beam length. This method also overcomes a
shortcoming of the finite element method that requires resizing
of the elements and recomputing their stiffness properties during
the optimization process [37]. However, Krishna and Ram [1] did
not set the end rotational spring stiffness CR = 2C at the clamped
end, but took CR as infinitely large. Furthermore, the cross-
sectional area for the free or pinned end was assumed to be zero
since the rotational spring stiffness at such boundary condition is
zero, which may be not practical. Also, there is a question on the
assumption of using a small number of rotational springs to inter-
pret the varying column shape, which may produce an inaccurate
higher bucking load of HBM than that of the continuum column
because of the presence of rigid segments. This study will discuss
these refinements in Krishna and Ram’s formulation and solutions
as well as extend the method for solving the optimal shape of col-
umns under distributed load.

In the next section, the general semi-analytical formulation for
columns under constant axial load is presented. In Section 3,
clamped-free, pinned-pinned and clamped-spring-supported col-
umns treated by Krishna and Ram [1] are re-analyzed. Section 4
deals with the optimal shape of clamped-free column under dis-
tributed load obtained by using the semi-analytical method. The
analytical buckling loads for uniform HBM under axial load and
selfweight are derived in Section 5 and those for non-uniform
HBM under axial load with a specific class of spring stiffnesses
are presented in Section 6.

2. Semi-analytical formulation of optimization for column
under axial load

Consider a HBM of n rigid segments with equal segmental
length a = L/n, subjected to a constant axial compressive load P as
shown in Fig. 1a. The rotational angle at the elastic joint j is
denoted by hj with j = 0, . . ., n�1. The segments are connected by
frictionless hinges and rotational springs having stiffness Cj = EIj/a
for joint j = 1, . . ., n�1, where E is the Young’s modulus and Ij the
second moment of area at joint j. The internal spring stiffnesses
of the HBMs are not the same since we are modelling a non-
uniform column. The bottom end A (the origin of HBM, i.e. x = 0)
is rigidly supported and the rotational springs having stiffnesses
CRA, CRB and a lateral spring CLB are presented to accommodate dif-
ferent boundary restraints for the column.

For simplicity, we shall assume a circular cross-section and let
Aj denote the area of the jth segment of the column. Accordingly,
the internal rotational spring stiffness Cj of the HBM is related to
Aj by

Cj ¼ EIj
a

¼ EA2
j

4pa
for j ¼ 0; . . . ;n ð1Þ

Fig. 1b shows the piecewise constant column shape that is
assumed to correspond to the HBM in Fig. 1a. It must be empha-
sized that the piecewise constant column (for approximating the
continuously varying cross-section column) shown in Fig. 1b is
an interpretation of the HBM and it is only accurate when we take
sufficient number of segments, say n = 100. In the figure, r0, r1, . . .,
rn-1, rn are the radii of the piecewise constant segments and the
radii are associated with the rotational spring stiffnesses C0, C1,
. . ., Cn-1, Cn respectively. As shown in Fig. 1b, the length of the
two end segments are assumed to be a/2 whereas the length of
the internal segments is a. Consequently, the volume of the
assumed piecewise constant column is given by

V ¼ a
Xn�1

j¼1

Aj þ 1
2
aA0 þ 1

2
aAn ð2Þ

Fig. 1. (a) General HBM under axial compressive load P and (b) corresponding
column shape.
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