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a b s t r a c t

This paper presents an efficient computer method for large deflection distributed plasticity analysis of 3D
semi-rigid steel frameworks. A novel second-order inelastic flexibility-based element has been developed
by combining the Maxwell-Mohr rule and the second-order force based functions for computation of the
generalized displacements. The proposed model allows explicit and efficient modelling of the initial geo-
metric imperfections and residual stresses and is intended to model the combined effects of nonlinear
geometrical and gradual spread-of-plasticity by using only one beam-column element per physical mem-
ber. At the cross-sectional level the proposed method addresses computational efficiency through the use
of path integral approach to numerical integration of the cross-sectional nonlinear characteristics and
residual stresses, enabling in this way the accurate geometrical specifications and precise modelling of
cross-sections. The combined effects of material, geometric and connection behavior nonlinearity sources
have been implemented in a general nonlinear static purpose computer program. Several computational
examples are given to validate the effectiveness of the proposed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric nonlinearity due to the large and small P-Delta
effects, material inelasticity and semi-rigid beam-to-column con-
nection behavior are the most important nonlinear sources exhib-
ited by steel frameworks. In addition, the geometrical and material
(i.e. residual stresses) imperfections are very difficult to alleviate
during manufacturing process of real structures. These imperfec-
tions affect both the load carrying capacity and deformability of
steel structures and must be considered in an advanced nonlinear
inelastic analysis procedure [1,2].

There currently exist several methods and computer programs
with an emphasis to the nonlinear inelastic analysis of frame struc-
tures with rigid and semi-rigid connections. At one extreme, two-
and three dimensional finite elements enhanced with advanced
material constitutive laws were used to investigate the nonlinear
response of steel frameworks with rigid and semi-rigid connec-
tions (e.g., [3,4]). All these available computer programs and
numerical models for such advanced analyses are general purpose
FE programs that require very fine-grained modelling, extensive
calibration and mesh generation studies that are often impractical
for current design practice. At the other extreme, the line elements
(1-D) approach in conjunction with either distributed or concen-

trated plasticity models, have been devoted to the development
of nonlinear analysis tools that provide a desirable balance
between accuracy and computational efficiency (e.g., [5–31])
among others. Within the context of the line finite elements (1-
D), there are three main approaches that have been used to model
the gradual plastification and spread of plasticity (distributed plas-
ticity) in a nonlinear inelastic analysis [5], one based on the dis-
placement method (e.g., [6–8]), the second one based on the
force or flexibility method (e.g., [9–11]), and the third one refers
to mixed or hybrid approach (e.g., [12,13]). In spite of the simplic-
ity and ease of implementation, because classical displacement-
based finite elements (i.e. the displacement field is approximated
with lower-order Hermitian shape functions) implicitly assumed
linear curvatures along the element length, accuracy in this
approach, when geometrical and/or material nonlinearity is taken
into account, can be obtained only using several elements in a sin-
gle structural member. Thus the computational effort is greatly
enhanced and the method becomes prohibited computational in
the case of large scale frame structures. On the other hand in the
either flexibility or mixed based approach only one element per
physical member can be used to simulate the gradual spread of
yielding throughout the volume of the members, but the complex-
ity of these methods derives from their implementation in a finite
element analysis program (i.e. state determination procedure) and
the inclusion of the element geometrical effects [27,28].
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In the concentrated plasticity approach [20–26] which is usu-
ally based on the plastic hinge concept, with different degrees of
refinement, the effect of material yielding is ‘‘lumped’’ into a
dimensionless plastic hinge. In the plastic hinge locations if the
cross-section forces are less than cross-section plastic capacity,
either elastic behavior or gradual transition (refined plastic hinge)
from elastic to plastic behavior is assumed. The plastic hinge
approach could eliminate the integration process on the cross sec-
tion and permits the use of fewer elements for each member, and
hence greatly reduces the computing effort. Unfortunately, as
plastification in the member is assumed to be concentrated at
the member ends, the plastic hinge model is usually less accurate
in formulating the member stiffness, requires calibration proce-
dures, but make possible to use least number of elements per phys-
ical member to simulate geometric and material nonlinearities in
building frameworks [20–24].

In the efforts to develop an intermediate solution that has the
computational efficiency of plastic hinge methods and the accu-
racy of distributed plasticity methods several researchers devel-
oped quasi-plastic hinge [14–19,29–31], stress-resultant
constitutive models [25,26] and higher order refined plastic hinge
elements [23,24]. Although subject to some limitations of required
calibration these methods have been shown to make distributed
plasticity analyses practical for large scale 3D steel [14–16,18–
22] and composite steel–concrete frameworks [17,23,24], using
least number of elements per structural member to capture the
nonlinear behavior of frame structures.

In spite of the availability of such nonlinear inelastic algorithms
and powerful computer programs, the nonlinear inelastic analysis
of real large-scale 3D semi-rigid frame structures still possess high
demands on the most powerful computers available and still rep-
resents unpractical tasks to most designers.

The present work attempts to develop accurate yet computa-
tional efficient tools for the nonlinear inelastic analysis of 3D steel
frameworks with semi-rigid connections fulfilling the practical and
advanced analysis requirements. Within the framework of
flexibility-based formulation a 3D frame element with 12 DOF able
to take into account gradual softening and spread of plasticity,
second-order geometrical effects, initial geometrical and material
imperfections and connection semi-rigidity is developed. The pre-
sent paper extends the previous study of the author in [15–17] in
several fundamental respects: (i) A novel second-order inelastic
flexibility-based element has been developed by coupling consis-
tently at the element level the inelastic behavior, second-order
effects due to element deformation (P-delta effect) and initial
geometric imperfections. The incremental force-displacement rela-
tionships are derived by applying the Maxwell-Mohr rule in con-
junction with the second-order force based functions for
computation of generalized displacements in the second-order
geometrically nonlinear analysis. In the previous formulations
[15–17] the incremental force-displacement relationships at the
element level have been derived considering the geometric linear
flexibility formulation and correcting the resulting stiffness matrix
and equivalent nodal forces with stability stiffness functions in
order to include the P-delta effects (i.e. combine the use of both
flexibility and stiffness approach). As a consequence there is a lack
of consistency between the inelastic behavior formulation (i.e.
force-based approach) and how the element geometrical effects
are included (i.e. displacement-based approach). In the present for-
mulation this lack of consistency is eliminated leading to a full
force-based formulation but keeping the computational efficiency
of the previous approaches [15–17]; (ii) A new force recovery pro-
cedure to find the nodal displacements, element resisting forces
and efficient modelling of initial geometric imperfections is imple-
mented corresponding to the proposed second-order flexibility
based model; and (iii) At the cross-sectional level the proposed

method addresses computational efficiency and modelling short-
comings through the use of path integral approach to numerical
integration of the cross-sectional nonlinear characteristics and
residual stresses without the need to decompose the cross-
section in distinct regions according with changes in the definition
of the residual stress distribution. In this way the difficulties of
integration on separate regions over entire cross-section is
avoided, by integrating only on the positively oriented boundary
of cross-section, leading to less computational effort since it does
not require the subdivision of cross-section into several regions
as in [17] and allows efficiently to handle various circular shapes
such as fillet regions which define the exact geometry of the struc-
tural steel profiles.

Comparing the proposed method with the related second-order
distributed plasticity methods developed in [10,11,28] the present
approach has several features that make the proposed element
more practical in the context of implementation in finite element
analysis program and possess accuracy comparable to that of
fibre-flexibility or fibre-displacement finite elements. As will be
briefly described in the following sections, the incremental force-
displacement relationships at the element level are derived
directly from energetic principles, by applying the Maxwell-Mohr
rule for computation of generalized displacements in the second-
order geometrically nonlinear analysis. In this respect the element
force fields are described by the second-order bending moments
and shear forces derived by solving the second-order differential
equilibrium equation expressing the variation of the bending
moment along the member length in the presence of the compres-
sive axial force (P-delta effects), member lateral loads and the
second-order effects associated with the initial geometric imper-
fections. Thus, at least in the elastic domain, the element force
fields can be exactly described as function of the nodal and applied
element forces and hence the element nonlinear geometrical
effects are included directly in the proposed formulation by using
nonlinear functions of axial force. On the other hand in the
displacement-based formulations, the deformed shape of the ele-
ment is obtained directly based on the nodal displacement values
and the adopted shape functions. Thus, the implementation of the
element second-order effects is straightforward, but the accuracy
is dependent by the number of the finite elements involved. In
the flexibility based formulations [10,11,28] there are no deforma-
tion shape functions to relate the deformation field inside the
element to the nodal displacements, hence, more elaborate and
more time consuming indirect procedures are required. For
instance, in order to capture the element geometrical effects in
[28] is developed a curvature-based displacement interpolation
(CBDI) function whereas in [10] Simpson integration scheme along
with piecewise interpolation of the curvature is applied. In the pro-
posed approach because the force fields are described by exact
solutions of the second-order differential equilibrium equation,
the modelling and solution time is minimized and generally only
one element are needed per member in order to simulate the sec-
ond order effects and no approximations of the curvatures along
the element length are involved to approximate the second-order
elastic response. In this way the elements of the flexibility matrix
and by its inversion the stiffness matrix and equivalent nodal loads
can be obtained analytically and readily evaluated by computing
the correction coefficients that affect the elastic flexibility coeffi-
cients and equivalent nodal loads. In this way numerical integra-
tions are required only to evaluate these correction coefficients
and not the entirely flexibility or stiffness matrix elements as in
[10,11,28]. Besides, the effect of the transverse shear deformation
can be readily included in the element formulation, both in stiff-
ness matrix and equivalent nodal loads. However due to the fact
that flexural rigidity becomes variable along the member length,
as spread of plasticity develops, the second-order equilibrium
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