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a b s t r a c t

This paper is concerned with the shear capacity of keyed joints reinforced with overlapping U-bar loops
in the transverse direction. The layout of the loop reinforcement affects the capacity and failure mode,
and currently it is not accounted for by standards or previous theoretical work. A multiscale approach
to the issue is proposed: An equilibrium element for finite element limit analysis representing keyed
joints is coupled with a suitable submodel, which handles the complex stress states within the joint.
The submodel is based on several modified stringer models, which makes it possible to account for local
mechanisms in the core of the joint. The element and submodel are validated by comparison to a detailed
model based on finite element limit analysis and experimental data. The joint element and submodel lead
to a small optimisation problem compared to the detailed model and the computational time is reduced
by several magnitudes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The lateral stability of modern precast concrete buildings is
often ensured by shear walls, i.e. precast wall panels connected
by in-situ cast joints. Horizontal forces, e.g. from wind load or seis-
mic action, are transferred as in-plane forces and the shear capac-
ity of the panels and joints are of the utmost importance. In
practice, the shear capacity of such walls is usually assessed by
analytical lower bound models, e.g. strut-and-tie models or stress
field methods [1,2]. The stress fields are also frequently deter-
mined by use of linear elastic finite element analysis. Naturally,
this practice often leads to suboptimal structures compared to
what can be obtained if the stress fields instead are determined
from a non-linear elastic-plastic analysis. Use of numerical
elastic-plastic analysis to determine stress fields has e.g. been
demonstrated in Refs. [3,4].

The joints between the precast panels are of particular interest
as they are often a critical part of the structure. In-situ cast joints
consist of a concrete core and two interfaces, where the core typi-
cally is reinforced in two directions, and the interfaces typically are
keyed. The shear capacity of the joints and interfaces is in practice
assessed by simple empirical formulas [5] which often gives a con-

servative estimate of the capacity. Several authors have investi-
gated the behaviour of in-situ cast joints. The investigations
cover both experimental testing [see e.g. 6–9] and simplified
mechanical models based on the theory of rigid-plasticity, namely
upper bound solutions based on yield line theory [10,11] and lower
bound solutions based on strut-and-tie models [1,11,12]. The
experiments showed that the geometry of the joint and the rein-
forcement layout affect the shear capacity as well as the collapse
mode, but the analytical methods have only been able to capture
the observed behaviour to a certain extent. Local failure mecha-
nisms caused by the reinforcement layout, however, have not been
investigated using analytical methods. Investigations using numer-
ical tools, e.g. finite element method or similar, have focused on
single key joints often used in precast concrete segmental bridges
[13,14]. These investigations have primarily been carried out by
use of non-linear finite element analysis. This approach is compu-
tationally heavy, especially when considering the fact that the ulti-
mate load carrying capacity is the result of main interest.

Herfelt et al. [15] presented a detailed model for keyed joints
based on finite element limit analysis. The model was based on a
lower bound formulation and the analysis yielded a statically
admissible stress field. Moreover, the solution to the dual problem,
i.e. the corresponding kinematic problem, was interpreted as the
failure mode. The detailed model used triangular plane stress ele-
ments [16] representing the concrete, bar elements [16] represent-
ing the reinforcement, and an interface elements representing the
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concrete-to-concrete interfaces. It was shown that the model could
represent the complex stress states within the joint and captured
the local failure mechanisms to a satisfactory degree; however,
for practical design it is not feasible to use that level of detail.
Fig. 1 shows a four storey wall comprising several precast panels
connected by in-situ cast joints. As indicated in the figure, plane
stress elements may be used to model the precast panels, while a
special joint element is needed for the joints.

This paper presents a lower bound equilibrium element repre-
senting the in-situ cast joints. The element is designed for interac-
tion with the triangular plane stress element [16] and interface
elements [15]. The scope is to be able to model entire wall systems,
e.g. the four storey wall seen in Fig. 1. The joint element requires a
suitable yield criterion which can capture the critical mechanisms
identified by the detailed model [15], and for this purpose, a semi-
analytical submodel yield criterion based on the stringer method is
developed. The joint element and submodel fit the format of
second-order cone programming, and the developed model is com-
pared to the detailed model [15] as well as experimental data [6,7].
The proposed multiscale model captures the behaviour of the
detailed model as well as the specimens.

2. Problem formulation

Finite element limit analysis can be considered as a special case
of the general finite element method: It is based on the extremum
principles for rigid-plastic materials [see e.g. 1,17,18] and deploys
a mesh discretisation known from the finite element method.
Anderheggen and Knöpfel [19] presented a general formulation
as well as equilibrium elements for solids and plates. Since the
1970s several authors have contributed to the method see e.g.
[16,20,21]. Finite element limit analysis is a direct method, where
the ultimate load is determined in a single step, which is a signif-
icant advantage over non-linear finite element methods for practi-
cal applications. Moreover, when modelling concrete structures,
there is no need to consider any tensile strength to avoid problems
related to numerical stability. From the lower bound formulation,
the stress field is determined. Associated with the lower bound
problem is a so-called dual problem, and the solution to this dual
problem can be interpreted as the displacement field and plastic
strain. Since we are dealing with a rigid plastic material model,
no information on the magnitude of the strains and displacements
are determined; only the directions. When the method is applied
to structural concrete, it is necessary to operate with effective
strength parameters (via the so-called effectiveness factors) to
account for the limited ductility of concrete as well as the reduc-
tion of the compressive strength as a result of cracking and tension
strains transverse to compressive stress fields. In practice, the
effective strength parameters have to be found by calibration of
calculations with results of tests on structural components.

Numerical lower bound limit analysis is formulated as an opti-
misation problem where the scope is to maximise a load factor k.
The analysis determines a statically admissible stress, i.e. a stress
field which satisfies equilibrium and does not violate the yield cri-
teria in any points. The general problem can be stated as [16,22]:

maximise k

subject to Hb ¼ Rkþ R0

f ðbiÞ 6 0; i ¼ 1;2; . . . ;m
ð1Þ

The load acting on the model consists of a constant part R0 and a
scalable part Rk. The linear equality constraints ensure equilibrium
while the functions f ðbiÞ 6 0 ensure that the stress filed does not
violate the yield criteria. H is the global equilibrium matrix, and b

is the stress vector. m is the number of check points for the yield

function, f, which is generally convex, but non-linear; thus, (1) rep-
resents a convex optimisation problem.

In this work, the optimisation problem (1) will be a second-
order cone program (SOCP). Second-order cone programming as
well as semidefinite programming have been used in the field of
finite element limit analysis for more than a decade, see e.g. Refs.
[23–25]. Expanding the yield functions f, (1) can be restated as:

maximise k

subject to Hb ¼ Rkþ R0

Cbbþ Caaþ Ccc ¼ C0

Ebbþ Eaaþ Ecc 6 E0

ci 2 Qki ; i ¼ 1;2; . . . ;m

ð2Þ

where a and c are problem variables associated with the yield func-
tions, and the C and E matrices define the necessary linear equali-
ties and inequalities for the chosen yield criterion. The variables
ci, associated with the ith check point for the stresses, are in a quad-
ratic cone Qki of size ki, defined as:

Qk ¼ xjx 2 Rk; x1 P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ � � � þ x2k

q� �
ð3Þ

The problem (2) can be solved efficiently using interior point algo-
rithm, and in this work the commercial solver MOSEK [26] is used.
The reader is referred to Refs. [27–30] for a detailed description of
SOCP and interior point solvers.

On the element level, the equilibrium equations and yield func-
tions can be stated as:

helbel ¼ qel

Cel;i
b bel þ Cel;i

a ai þ Cel;i
c ci ¼ Cel;i

0 ; i ¼ 1;2; . . . ;mel

Eel;i
b bel þ Eel;i

a ai þ Eel;i
c ci 6 Eel;i

0 ; i ¼ 1;2; . . . ;mel

ci 2 Qki ; i ¼ 1;2; . . . ;mel

ð4Þ

qel is the contributions to the equilibrium equations on the global
level, bel is the stress variables of the given element, and hel is the

element equilibrium matrix. The matrices Cel;i and Eel;i define the
yield function for the mel check points of the element. Similarly to
(2), the variables denoted ci are required to be in a quadratic cone
Qki of size ki.

3. Keyed joints and detailed numerical model

A keyed joint reinforced with loop reinforcement (U-bars) and a
locking bar is considered. Fig. 2 shows the basic geometry and a
unit section (dashed rectangle) which will form the foundation of
the submodel yield criterion. The thick vertical lines seen in
Fig. 2 represent the loop reinforcement, while the horizontal solid
line represents the locking bar. The length of keyed joints in prac-
tice usually ranges from a single storey height to the height of the
entire building, while the width b and thickness t usually are below
200 mm.

For the detailed numerical model presented by Herfelt et al.
[15], several thousand plane stress elements were necessary to
capture the local mechanisms and stress fields developed in the
core of the joint. The model was loaded such that the centre line
of the joint would be subjected to pure shear, i.e. no bending.
The concrete is modelled as a Mohr-Coulomb material, while a
simple linear criterion is used for the rebars. For the interface, a
Coulomb friction model is assumed. The model assumed plane
stress state, thus, the confinement provided by the reinforcement
loops and general triaxial stress states were disregarded.

Fig. 3(a) shows an example of the collapse mode determined by
the aforementioned detailed model [15] using the solution to the
dual problem, i.e. the corresponding kinematic problem. The inter-
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