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a b s t r a c t

This paper presents an improved displacement based element (iDBE) for nonlinear finite element analysis
of framed structures, which, like the force based elements (FBE), needs neither high order shape functions
nor the refinement of the finite element mesh in straight members to attain an accurate solution. To
achieve this objective, to the strain fields based on the displacements shape functions of the conventional
displacement based element (cDBE) corrective fields are added, which are determined at the element
level by the principle of virtual forces. Simple examples involving tapered elements, nonlinear axial-
bending interaction and elasto-plastic behavior, are included to illustrate the application of iDBE and
compare its performance to cDBE and FBE.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In general terms, the finite element analysis of framed struc-
tures can be based on either the displacement based element
(DBE) or the force based element (FBE). The former is the most
popular approach due (i) to its simpler formulation, because it is
directly derived from the approximation of the displacement fields
and (ii) to the more practical strain driven constitutive relations.
However, when the conventional DBE (cDBE) is applied to nonlin-
ear analysis, it shows a strong drawback, because of the poor
approximation of the generalized strain fields and, thus, of the
internal force fields which are based on the latter. This is an out-
come of the discretization error due to the interpolation of the dis-
placement fields, with linear and cubic polynomial functions in the
common two-node finite element [13], so that the axial strain field
is constant and the curvature field is linear. To improve the approx-
imation of the generalized strain and internal force fields, the finite
element mesh must be refined, increasing the dimension of the
numerical model and the computation time.

The FBE does not share this drawback, because it is based on the
interpolation of the internal force fields. It therefore dispenses with
the mesh refinement, the solution accuracy being increased by

increasing the number of integration points (NIP) in the element
— this renders the FBE more efficient than the DBE [8]. The FBE
is particularly advantageous when bending moment and axial
force interaction is involved, e.g., in the nonlinear dynamic analysis
of framed structures [13]. The FBE is developed and applied in sev-
eral references, besides the two given above, e.g. [12,9,7], all with
some involvement of F. Filippou.

This paper presents an improved displacement based finite ele-
ment (iDBE) that gets accurate approximations to the generalized
strain fields, e.g. axial strain (e) and bending curvatures (v), with-
out having to employ high-order elements or reduce the finite ele-
ment length. Having this objective in view, to the usual generalized
strain fields, based on displacement shape functions, corrective
nonlinear strain fields �NL;0;s (defined below) are added, in analogy
with the enhanced element formulation of Simo and Rifai [11]. A
fundamental step in the derivation of the iDBE, is that the addi-
tional assumed strain fields must be orthogonal, at the element
level, to statically admissible stress fields,Z L

0
b|
s�NL;0;sdx ¼ 0 ð1Þ

where L is the element length and bs is the matrix of shape func-
tions for the internal force fields, commonly ignoring the element
loading. Vectors and matrices are denoted by bold symbols and
their dimensions are given in the notation section. This compatibil-
ity condition is like a virtual forces statement (PVF) and is so called
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in the paper. With the exception of the above condition, the general
framework of the improved element is that of the conventional DBE,
based on the principle of virtual displacements (PVD), see (11). The
combination of the PVD and PVF statements show that this element
is based on a mixed principle, but since the static parameters asso-
ciated to the auxiliary stress fields are condensed at the element
level, the resulting finite element can be viewed as a generalized
displacement element [10]. In fact, basically, it results from adding
a corrective term to the strain fields of the common DBE, and it pre-
serves the basic structure of that element. Moreover, because of the
combination of PVF and PVD, the proposed element, like the FBE,
involves only a numerical integration error, and not a discretization
error, meaning that mesh refinement is not needed to decrease the
error [8].

2. From the fictitious forces method to the iDBE

The iDBE can be formulated either directly or as an emanation
of the fictitious forces method (FFM). Choosing the latter approach
one starts by presenting FFM and its application to the analysis of
framed structures, under the Euler-Bernoulli beam theory. FFM
[5,6], which is based on Zienkiewicz and Argyris initial stress and
initial strain methods [14,1], was specifically developed as a simple
iterative method for the materially nonlinear analysis. FFM oper-
ates with an auxiliary structure which is similar to the original
one but (i) is made of fictitious linear elastic materials and (ii)
has a diagonal linear matrix of stiffness fields, Kaux;s, which is con-
stant along each finite element and whose diagonal elements for
the torsionless spatial linear element are EAaux; EIy;aux and EIz;aux,
whereas the element stiffness matrices,

Kaux;e ¼
Z L

0
B|
sKaux;sBsdx ð2Þ

and the global stiffness matrix, Kaux, are calculated as usually. In this
expression, Bs is the matrix of strain shape functions derived from
the nd displacement shape functions (collecting these in Ns, then
Bs ¼ SNs, where S is a ‘‘matrix” of differential operators [14]). The
finite element is referred to a Cartesian coordinate system xyz with
axis x along its longitudinal axis; the subscript ð�Þs denotes an ele-
ment field along this axis. Since the auxiliary structure is linear elas-
tic, the stiffness matrices are calculated only once, before the
iterative loop. The iDBE procedure also needs an element flexibility
matrix, Faux;e, associated with the nX element natural modes, i.e.
which exclude rigid body motions [1],

Faux;e ¼
Z L

0
b|
sK

�1
aux;sbsdx ð3Þ

The key step of iDBE is the decomposition of the generalized
strain fields in (i) what will be called their linear part, i.e. the fields
corresponding to the displacement shape functions, Bsde, and to
the effect of the actions inside the elements of the auxiliary struc-
ture with fixed nodes (vanishing nodal displacements), �el:act:

0;s , as
denoted by the subscript ð�Þ0, and (ii) the remaining part, denoted
�NL;0;s, which will be called their nonlinear part,

�ðxÞ � �s ¼ Bsde þ �el:act:
0;s þ �NL;0;s ð4Þ

see Fig. 1. The �NL;0;s term in this decomposition echoes the a priori
strain field assumption of the so-called assumed strain method [11].

The dimension of vector �s is given by the number of cross-
sectional independent generalized stresses (nX;cs): for a torsionless

Euler-Bernoulli spatial element nX;cs ¼ 3 and �s ¼ e;vy;vz

h i|
, i.e. it

contains the axial strain and the two bending curvatures. The
Euler-Bernoulli hypothesis determines the normal strain distribu-
tion in each section, �csðy; zÞ ¼ es þ zvy;s þ yvz;s ¼ l�s, the subscript

ð�Þcs denoting a field in the cross-section and l being given by
l ¼ ½1; z; y� [13]. The, possibly nonlinear, constitutive relation yields
the normal stress distribution, rcs � rcs½�cs�, whose resultants are
the internal forces in each section

Xs � X½�s� ¼
Z
A
l|rcsdA ð5Þ

square brackets �½ � denoting a functional dependency. For the Euler-
Bernoulli torsionless spatial element Xs ¼ ½N;My;Mz�|. Because of
the material nonlinearity, the ‘‘shapes” of the internal force fields
Xs and of the generalized strain fields �s are linearly incompatible.
The cause to such incompatibility is a component of �s which shall
be denoted �NL;free;s and that is such that the linear relation between
the internal forces and �s � �NL;free;s is given by Kaux;s,

Xs ¼ Kaux;s �s � �NL;free;s
� � () �NL;free;s ¼ �s � K�1

aux;sXs ð6Þ
see Fig. 2. This expression justifies the assumption of constant Kaux;s

fields along each finite element. In general, the fields �NL;free;s are
incompatible with vanishing nodal displacements. The nonlinear
component �NL;0;s of the generalized strain is therefore given by
the sum of this irregular component �NL;free;s with another one, cor-
responding to a statically admissible field, bspe, where pe are the nX

hyperstatic forces required for null nodal displacements,

�NL;0;s ¼ �NL;free;s þ K�1
aux;sbspe ð7Þ

Inserting this decomposition into the PVF compatibility state-
ment (1), yieldsZ L

0
b|
s�NL;free;sdxþ

Z L

0
b|
sK

�1
aux;sbs

� �
pedx ¼ 0 ð8Þ

Introducing as intermediate quantities the nX element
discontinuities,

Fig. 1. Sketch of the iDBE structural relations.

Fig. 2. Schematic illustration of expression (6).
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