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a b s t r a c t

There has been a controversial claim that the beam model formulation for functionally graded materials
(FGM) beams must be based on the neutral plane for correct solutions. This claim cuts across well
accepted mid-plane formulation for FGM beams. Presented herein is a critical examination of the mid-
plane and neutral plane formulations for the vibration analysis of FGM beams. It will be shown herein
that the problem arises from a misconception that the immovable supporting points are located at the
mid-plane when the supporting points are actually at the neutral plane when basing the formulation
on the neutral plane. The positioning of the immovable simple supports at two different planes leads
to the difference in results. However, in the case of movable simple supports, the mid-plane formulation
furnishes the same vibration solutions as the neutral plane formulation, even though the supports are
located on different planes. Both formulations furnish the same frequency results for clamped ends.
The conclusion is that there is nothing wrong with using the mid-plane formulation for FGM beams. In
fact, by using the neutral plane formulation, it would be difficult to solve FGM beams with a constraint
on the longitudinal displacement at the midplane.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Midplane formulation is most commonly used to analyze func-
tionally graded beams or plates [1–9]. However, several research-
ers have suggested that the neutral plane formulation must be
used, instead of the mid-plane formulation, for analysis of func-
tionally graded materials (FGM) beams. Abrate [10] demonstrated
that elastic coupling due to variation in material properties
through the thickness of plate can be eliminated by selecting the
neutral plane as the reference plane for the formulation of the plate
equations. By doing so, the formulation of the FGM plate becomes
similar to that of a homogeneous plate. They also claimed that the
neutral plane formulation is applicable for nonlinear geometric
problems. Zhang and Zhou [11] concluded that the use of the neu-
tral plane for the thin plate theory has more merits in engineering
applications because it is simpler than classical laminated plate
theory that is based on middle surface. Yaghoobi and Fereidoon
[12] performed bending analysis of simply supported FGM beams
under uniformly distributed load by using the neutral plane

formulation. They showed that the deflections obtained are larger
than their counterparts based on the midplane formulation. Larbi
et al. [13] developed a new shear deformation beam theory based
on the neutral axis being the reference axis and calculated the
vibration frequencies of simply supported beam where the ends
were movable in the axial direction. They showed that the vibra-
tion frequencies calculated from their shear deformation theory
are in very close agreement with the vibration frequencies
obtained from other shear deformation theories that rely on the
mid-plane formulation. Eltaher et al. [14] adopted the neutral
plane for the Euler Bernoulli beam formulation to calculate the
vibration frequencies of FGM beams and compared the results with
those obtained using mid-plane formulation. Their calculations
showed that the vibration frequencies obtained from mid-plane
and neutral plane formulations are different; by as much as 10%
for certain values of gradient index. Yin et al. [15] claimed that
the midplane formulation is not suitable for vibration analysis of
FGM plates and that the neutral plane formulation must be
employed instead. Zhang [16] modified Reddy’s third order beam
theory (Reddy [17]) to account for the effect of neutral plane and
employed the modified third order beam theory to study post-
buckling and nonlinear vibration responses of FGM beams. They
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also showed that the neutral plane formulation gives rise to sim-
pler governing equations for FGM beams. Eltaher et al. [18] studied
the bending and buckling problems of modified functionally
graded nanobeams modeled by Timoshenko beam theory and they
showed that the deflections and buckling loads calculated from the
midplane and neutral plane formulations may differ by as much as
16% for certain cases and concluded that neutral formulation must
be used for FGM beam analysis. On the other hand, Zoubida et al.
[19] demonstrated that the mid-plane based and the neutral plane
based formulations furnish identical linear vibration frequencies.
Lee et al. [20] studied the thermal buckling behavior of functionally
graded plates and claimed that the neutral plane formulation pre-
dicts a smaller critical temperature when compared to the mid-
plane formulation. It can be seen that the conclusion arrived at
by various aforementioned researchers on the use of neutral plane
formulation is rather discomforting as many researchers have
adopted the midplane formulation for their analysis of FGM beams
and plates.

Prompted by the existing confusion, this study critically exam-
ines the mid-plane and neutral plane formulations in the context of
linear vibration of FGM beams. If the claim made by some
researchers that the neutral plane is the correct formulation, then
it would mean that all previous works done on functionally graded
beams, antisymmetric laminated beams and any beam with non-
symmetric properties based on the mid-plane formulation have
predicted erroneous results. On the other hand, if the claim is
not true, where are the misconceptions?

2. Formulation based on mid-plane for linear vibration of FGM
beams

First, we present the mid-plane formulation of the Euler-
Bernoulli beam model for FGM beams. Consider a functionally
graded beam with length L, thickness h and Cartesian x–z coordi-
nate system where the origin is at the left end of the beam as
shown in Fig. 1. The FGM is a mixture of ceramics and metal. Its
Young’s modulus E(z), mass density q(z) and Poisson’s ratio m(z)
are assumed to change continuously along the thickness according
to the power law distribution

EðzÞ ¼ ðE2 � E1Þ 2zþ h
2h

� �n

þ E1 ð1Þ

qðzÞ ¼ ðq2 � q1Þ
2zþ h
2h

� �n

þ q1 ð2Þ

mðzÞ ¼ ðm2 � m1Þ 2zþ h
2h

� �n

þ m1 ð3Þ

where the subscripts ‘‘1” and ‘‘2” denote the metal and ceramic con-
stituents, respectively. The top surface (z ¼ �h=2Þ of the beam is
100% metal while the bottom surface (z ¼ h=2Þ is 100% ceramics.
The power n is the gradient index characterizing the distributions
of the material properties. When n = 0, the FGM beam reduces to
a homogeneous beam.

According to the Euler-Bernoulli beam theory, the longitudinal
displacement u(x,z, t) and the transverse displacement w(x,z, t)
are, respectively, given by

uðx; z; tÞ ¼ u0ðx; tÞ � z
@w0

@x
; ð4Þ

wðx; z; tÞ ¼ w0ðx; tÞ ð5Þ
where uo(x, t) and wo(x, t) are the displacement components on the
mid-plane. In view of the longitudinal displacement, the normal
strain ex is given by

ex ¼ @u0

@x
� z

@2w0

@x2
ð6Þ

By assuming an elastic constitutive relation, the normal stress rx is
given by

rx ¼ EðzÞ
1� m2ðzÞ

@u0

@x
� z

@2w0

@x2

" #
ð7Þ

Hamilton’s principle requires thatZ T

0
ðdU � dTÞdt ¼ 0 ð8Þ

For convenience, the width of the beam is assumed to be unity so
that the integrals over the cross-section area may be written as
an integral over the depth of the beam. Thus, the variational strain
energy dU is given by

dU ¼ R L
x¼0

R h
2

�h
2
rx
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@x2

h i
dzdx ¼ R L
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h i
dx
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h i
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ð9Þ

and the variational kinetic energy dT is given by

dT ¼ R L
x¼0

R h
2

�h
2
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2
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0 I0 €w0dw0dx

ð10Þ

Note that Eq. (10) is simplified by setting the integrals to zero that
are evaluated at t = 0 and t = T because the virtual displacements du0

and dw0 are zero at t = 0 and t = T.
By gathering coefficients of the variational termsdu0; dw0 and by

setting these coefficients to zero, we derive the following equations
of motion

@Nx

@x
¼ I0

@2u0

@t2
� I1

@3w0

@x@t2
ð11Þ

@2Mx

@x2
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@2w0
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In view of Eq. (7), the force-displacement relations are given by

Nx ¼ A11
@u0

@x
� B11

@2w0

@x2
ð13Þ

Mx ¼ B11
@u0

@x
� D11

@2w0

@x2
ð14Þ

where I0 ¼ R h
2

�h
2
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2

�h
2
zqðzÞdz, I2 ¼ R h

2

�h
2
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2
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2
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2
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2
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2

z2EðzÞ
1�m2ðzÞ dz.

By substituting Eqs. (13) and (14) into Eqs. (11) and (12), the
equations of motion may be rewritten as

A11
@2u0

@x2
� B11

@3w0

@x3
¼ I0
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@x2@t2
ð16Þ

Fig. 1. FGM beam with mid-plane formulation.
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