ARTICLE IN PRESS

Engineering Structures xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Seismic behavior of special truss moment frame with double hollow structural sections as chord members

Sanputt Simasathien, Chatchai Jiansinlapadamrong, Shih-Ho Chao*

Dept. of Civil Engineering, University of Texas at Arlington, Arlington, TX 76019, United States

ARTICLE INFO

Article history: Received 11 April 2016 Revised 22 August 2016 Accepted 2 October 2016 Available online xxxx

Keywords: Special truss moment frame Hollow structural sections Seismic design Steel

ABSTRACT

Research work carried out on steel special truss moment frames (STMFs) with double-angle sections as chord members during the 1990s led to the formulation of design code provisions. Further research results using double-channel specimens resulted in a modified equation for the expected vertical shear strength of the central special segments, V_{ne} , and has been incorporated into the current AISC Seismic Provisions for Structural Steel Buildings. Double hollow structural sections (double-HSS) have the advantages of minimizing lateral torsional buckling and maximizing compactness in the flanges as compared to single HSS with the same flexural capacity. In this research, double-HSS members were proposed for the chord and web members of STMFs instead of double-angle, double-channel, or single-HSS. Double-HSS can effectively delay flange local buckling and enhance rotational ductility due to reduced width-to-thickness ratio (b/t) without increasing the wall thickness of the members. A full-scale STMF subassemblage with double-HSS as truss members was tested under large displacement reversals to simulate a severe earthquake ground motion. Testing results indicate that using double-HSS truss members is a viable alternative for STMFs in high seismic regions. Plastic hinge models are also suggested for computer analysis and design of non-yielding members outside of the special segments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Research carried out in the 1990s on the seismic behavior of steel special truss moment frames (STMFs) using double-angle sections [13,11,4,5] led to the formulation of design code provisions incorporated into the American Institute of Steel Construction (AISC) Seismic Provisions for Structural Steel buildings in 1997 (Eq. (1)) [1]. One of the major advantages of using the STMF system is that truss girders can be economically used over longer spans due to the fact that higher overall structural stiffness can be achieved by using deeper girders. In addition, the open-webs can easily accommodate mechanical and electrical ductwork. As a consequence, this system offers a wide range of structural, architectural, and economical benefits because of its ability to achieve a large column-free floor.

STMFs dissipate earthquake energy through the ductile chord members of special segments located near the mid-span of the truss girders which act as a structural "fuse" as shown in Fig. 1 (a). The members outside of the special segment are easily

http://dx.doi.org/10.1016/j.engstruct.2016.10.001 0141-0296/© 2016 Elsevier Ltd. All rights reserved.

E-mail address: shchao@uta.edu (S.-H. Chao).

designed to remain elastic using the free-body diagram of the column tree subjected to design loading and expected vertical shear strength, V_{ne} , based on the capacity of the chord members in the special segment, seen in Fig. 1(b). The ductility of a truss system can also be improved by using dissipative energy devices, for example, using dampers at the ends of the bottom chords of the truss girders as shown by Longo et al. [14].

STMFs located in high seismic zones call for truss member sections stronger than double-angle sections, which led to further research studies on STMFs with double-channel chord members and a revised equation in AISC Seismic Provisions for Structural Steel Buildings (AISC 341-10) in 2010 (Eq. (2)) [15,6,2].

$$V_{ne} = \frac{3.75 R_y M_{nc}}{L_s} + 0.075 EI \frac{(L - L_s)}{L_s^3} + R_y (P_{nt} + 0.3 P_{nc}) \sin \alpha$$
 (1)

$$V_{ne} = \frac{3.60 R_y M_{nc}}{L_s} + 0.036 E I \frac{L}{L_s^3} + R_y (P_{nt} + 0.3 P_{nc}) \sin \alpha$$
 (2)

where

E = modulus of elasticity of a chord member of the special segment,

I = moment of inertia of a chord member of the special segment, L = length of the truss,

^{*} Corresponding author.

Nomenclature angle of diagonal members with the horizontal Ι moment of inertia of a chord member of the special segα β angle of vertical members at the ends of the special segment span length of truss ment with the vertical L angle of chord members with the horizontal length of special segment L_s plastic hinge rotation of chord members nominal flexural strength of a chord member of the spe- θ_p M_{nc} b width of compression element cial segment gross area of the flange nominal plastic flexural strength A_f M_p expected plastic flexural strength Ďı member rotation corresponding to the beginning of $M_{p,exp}$ strength loss $\dot{M_r}$ residue flexural strength D_r member rotation corresponding to the end of strength M_u required flexural strength, using LRFD load combinaloss tions D_{ν} member rotation corresponding to expected flexural nominal compressive strength of the chord member at P_{nc} strength the ends member rotation corresponding to required flexural nominal axial tensile strength of a diagonal members of D_{ii} P_{nt} strength the special segment Е modulus of elasticity of steel P_u required axial strength, using LRFD load combinations specified minimum yield stress of the type of steel to be ratio of the expected yield stress to the specified mini- F_{ν} R_{ν} mum yield stress, F_v used actual yield stress of steel from a coupon test t thickness of element $F_{y,actual}$ expected vertical shear strength of the special segment the clear distance between the flanges less the inside V_{ne} corner radius on each side plastic section modulus of a member 7

 L_s = length of the special segment,

 M_{nc} = nominal flexural strength of a chord member of the special segment,

 P_{nt} = nominal tensile strength of a diagonal member of the special segment (if any),

 P_{nc} = nominal compressive strength of a diagonal member of the special segment (if any),

 R_y = ratio of the expected yield stress to the specified minimum yield stress,

 V_{ne} = expected vertical shear strength of the special segment, α = angle of diagonal members with the horizontal.

As opposed to moment frames in which the plastic rotational demand in beams is close to the story drift ratio, the plastic rota-

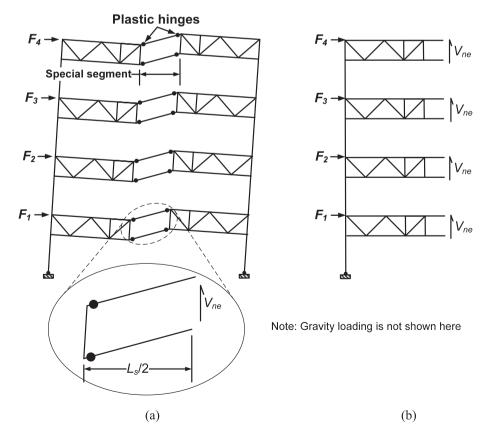


Fig. 1. STMF: (a) yielding mechanism adapted from Goel and Chao [10], (b) free-body diagram of column tree and associated truss girder portions adapted from Goel and Chao [10].

Please cite this article in press as: Simasathien S et al. Seismic behavior of special truss moment frame with double hollow structural sections as chord members. Eng Struct (2016), http://dx.doi.org/10.1016/j.engstruct.2016.10.001

Download English Version:

https://daneshyari.com/en/article/4920580

Download Persian Version:

https://daneshyari.com/article/4920580

<u>Daneshyari.com</u>