
Topology optimization of geometrically nonlinear trusses with spurious
eigenmodes control

Lei Li a, Kapil Khandelwal b,⇑
aDept. of Civil & Env. Engg. & Earth Sci., University of Notre Dame, United States
bDept. of Civil & Env. Engg. & Earth Sci., 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, United States

a r t i c l e i n f o

Article history:
Received 10 April 2016
Revised 26 October 2016
Accepted 1 November 2016
Available online xxxx

Keywords:
Truss topology optimization
Geometric nonlinearity
Critical load constraint
Spurious eigen-modes
Nonlinear systems

a b s t r a c t

In this paper, topology optimization of geometrically nonlinear trusses with and without stability con-
straints is investigated. It is shown that if classical minimum compliance formulation is considered with-
out any stability constraints, the optimized designs are unstable and convergence issues may be
encountered in the nonlinear structural analyses. To address these issues, a minimum compliance formu-
lation with critical load factor constraint is proposed together with a strategy based on spurious modal
energy ratio to determine the true critical eigenmodes and the corresponding critical load factor.
Several numerical examples are presented to demonstrate the effectiveness of the proposed approach,
which show that the optimized truss topologies obtained using the proposed approach are stable.
More importantly, the critical load constraint is able to guarantee that the first critical load of the opti-
mized design is always above the applied load so that the proposed approach is free from convergence
issues during the Newton Raphson solution process.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization of trusses is an important topic in struc-
tural optimization as it provides an efficient and flexible design
technique [1–5]. Unlike classic sizing or shape optimization, topol-
ogy optimization seeks the best layout of members by optimizing
the given objective function while satisfying the prescribed con-
straints and boundary conditions [6,7]. The truss topology opti-
mization problem is usually formulated and implemented in the
framework of a ground structure approach [8]. In this approach,
an interconnected initial mesh, termed ‘‘ground structure”, is first
generated, and then the inefficient members are subsequently
removed during the optimization process. Small deformation and
elastic material assumption is usually made in the truss topology
optimization, which results in a geometrically linear truss model.
In this case, the most commonly used optimization formulation
is minimum compliance, subjected to the equilibrium equations
and volume constraints, which is also called the stiffness design
formulation [9–12]. This displacement based non-convex formula-
tion can be either solved by various nonlinear programming (NLP)
methods [7,13], or transformed into convex formulations which
are solved by tailored optimization algorithms [12]. The stiffness

design formulation can be also approximated in terms of member
forces to yield a linear programming (LP) problem, which can be
solved very efficiently with a large number of design variables
[14–16].

As stability considerations are absent from the stiffness design
formulations, the optimized topologies may be unstable. For topol-
ogy optimization, a number of studies in the past have addressed
the local and global stability issues in linear elastic truss topology
optimization [17]. In most cases, the local stability of members is
enforced by including constraints based on Euler buckling
[18–20]. While the local stability issue can be addressed in the
stiffness design formulations by including additional constraints
based on the Euler buckling criterion, the final optimized topolo-
gies can still be globally unstable, as in the common case of a chain
of collinearly connected truss members [18]. Although these colli-
near members can be merged into a one longer member through
the node cancellation post-processing, it is shown that the long
members also increase the potential for local instabilities, and
the global stability may still not be ensured [19]. To address this
issue, linear truss topology optimization considering global stabil-
ity has been investigated in the past. For instance, Ben-Tal et al.
[17] and Kočvara [21] included a linear global stability constraint
into the compliance formulation. Guo et al. [22] incorporated
overlapping bars in the ground structure aiming to address the dif-
ficulty caused by hinge cancellation pointed out by Rozvany [18].
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These aforementioned studies are mostly based on stiffness
design formulation and are solved using NLP, since the LP formula-
tions cannot be recovered in the case where stability constraints
are included. Moreover, all the studies mentioned above are
restricted to linear elastic truss models, and the so-called linear
buckling analysis is adopted to evaluate the critical loads. The lin-
ear buckling analysis is based on the assumption that geometric
nonlinearities are insignificant and this assumption can lead to
incorrect estimation of the critical loads if the actual deformations
are large [23]. Therefore, it is necessary to employ geometrically
nonlinear models in the stability analysis for accurately determin-
ing the critical loads. However, this will lead to a nonlinear system,
and the equilibrium solution of such a system has to be character-
ized with respect to critical points including bifurcation and limit
points. Such nonlinear analysis is also rather meaningful, since it
will naturally capture the nonlinear behavior of truss systems
under large deformations. Thus topology optimization of geometri-
cally nonlinear trusses is the focus of this paper. It should be noted
that only the literature considering truss topology optimization is
reviewed above; details about nonlinear topology optimization in
continuum settings can be found in Refs. [24,25] and references
therein. In addition, sizing optimization of geometrical nonlinear
trusses is not reviewed here and the details can be found else-
where [26–29].

For geometrically nonlinear trusses, Ramos and Paulino [30]
recently proposed a convex topology optimization formulation
using a potential energy approach. However, stability issues were
not addressed in that study. In this study, topology optimization
of geometrically nonlinear trusses is carried out using optimization
formulations with and without critical load constraints. To this
end, a new optimization formulation is proposed for nonlinear
truss topology optimization, wherein the global stability constraint
is explicitly incorporated using the minimum critical load associ-
ated with the true eigenmode. To address the spurious modes issue
associated with the low density members [31–33], a new spurious
mode identification approach is presented based on the spurious
modal energy ratio. Various test cases are presented to demon-
strate the effectiveness of the proposed approaches for handling
stability issues in geometrically nonlinear trusses.

The paper is organized as follows: In Section 2, the large defor-
mation kinematics/kinetics of geometrically nonlinear truss, the
equilibrium equations and solution techniques are presented. Sec-
tion 3 presents the critical load factor estimation based on the non-
linear analysis. In Section 4, the topology optimization
formulations are stated and the relevant sensitivity analyses are
carried out. Section 5 describes the approach to identify the local-
ized eigenmodes using spurious modal strain energy ratio. Various
test cases are presented in Section 6 to demonstrate the effective-
ness of the proposed approaches. Finally, the important remarks
and conclusions are given in Section 7.

2. Geometrically nonlinear truss analysis

In this section, a geometrically nonlinear hyperelastic truss
model based on Green-Lagrangian strain is briefly described in
which the large deformation kinematics are taken into
consideration.

2.1. Kinematics and kinetics

Consider a truss member AB in initial configuration with initial
length L0, area A0 and volume V0 ¼ L0A0 as shown in Fig. 1. After
deformation ua and ub of nodes A and B, respectively, the current
configuration for the member becomes ab with member length L.
The member length before and after the deformation are given by

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

BAXBA

q
ð1Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXBA þ ubaÞTðXBA þ ubaÞ

q
ð2Þ

where the coordinate difference vector XBA and the relative dis-
placement vector uba between nodes A and B are given as

XBA ¼ ½XBA;YBA; ZBA�T ¼ ½XB � XA;YB � YA; ZB � ZA�T ð3Þ

uba ¼ ½uba;vba;wba�T ¼ ½ub � ua;vb � va;wb �wa�T ð4Þ
where ðXA;YA; ZAÞ and ðXB;YB; ZBÞ are the nodal coordinates in the
initial configuration of member nodes A and B, while ðua; va;waÞ
and ðub;vb;wbÞ are the displacements of the nodes A and B, respec-
tively, as shown in Fig. 1. The Green-Lagrangian strain is used in this
study which is given by

e ¼ 1
2
ðk2 � 1Þ ð5Þ

where k ¼ L=L0 is the stretch ratio for the truss member. Note that
the other strain measures such as logarithmic strain and Euler-
Almansi strain [34], can also be employed to formulate the finite
deformation truss model [30]. Only the elastic material behavior
is considered and, in this case, the stress is given by

r ¼ Ee ð6Þ

2.2. Equilibrium by principal of virtual work

The internal (Wint) and external (Wext) virtual work for the truss
structure can be expressed as

Wint ¼
Xnel
e¼1

We
int ¼ duTF intðuÞ where

F intðuÞ ¼ A
nel
e¼1F

e
int ¼ A

nel
e¼1ðBeT Ae

0L
e
0r

eÞ
ð7Þ

Wext ¼ duTP ð8Þ
where A is the standard finite element assembly operator, nel

denotes the total number of truss members, P is the external nodal
force vector and du is the global virtual displacement vector. Also,
the displacement-gradient operator Be for the eth member is given
by

Be ¼ 1

Le
2

0

½�Xe
BA � ue

ba;�Ye
BA � ve

ba;�Ze
BA �we

ba;X
e
BA þ ue

ba;Y
e
BA

þ ve
ba; Z

e
BA þwe

ba� ð9Þ
The principle of virtual work implies thatWint ¼ Wext8du, which

after the application of boundary conditions yields the equilibrium
equations in residual form as

A
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ub(ub,vb,wb)

x

y

z
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Fig. 1. Kinematics of a truss member.
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