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a b s t r a c t

Structural deterioration or damage in civil infrastructures may results in severe losses of properties and
human lives. To prevent such situations, structure health monitoring (SHM) technologies have been
developed in recent decades. As one of the SHM technologies, so-called system identification (SI) meth-
ods aim to estimate structural parameters by minimizing an error function consisting of measured and
calculated responses of a structure under the same loading condition. Such optimization-based SI algo-
rithms may suffer from ill-posedness of the inverse problem, which may result in non-uniqueness of
solutions or non-stability of the optimization process. In this paper, in order to avoid issues related to
ill-posedness, an SI method based on the Bayesian Network (BN) technology is developed, especially
for probabilistic identification of spatial distribution of structural parameters. Utilizing graph theories,
a BN describes random variables by nodes connected by links, which represent conditional probability
tables (CPT) explaining the probabilistic relationship between the linked nodes. For effective SI using
BN, this study proposes a BN graph model, which employs a bi-variate Gaussian function as a shape func-
tion describing the spatial distribution of a structural parameter with a small number of parameters. The
parameters of the Gaussian (shape) function are considered as nodes in the BN to describe various spatial
distribution patterns using a small number of parent nodes. Using this modeling approach, the number of
the BN nodes is not affected by the size of the finite element (FE) mesh. Thus, the approach prevents the
BN graph from growing to an intractable size even if the FE analysis requires smaller meshes to improve
the accuracy of the structural analysis. Using the constructed BN, information on applied loads, and
observed structural responses, a BN inference algorithm effectively updates the prior distribution of spa-
tial distribution parameters to the posterior distribution. The proposed method is tested and demon-
strated by numerical examples. Using a variety of structural deterioration scenarios, the SI results by
the proposed method are compared with those by maximum likelihood estimation (MLE), and an
FE-updating method. During the test, the influences of measurement errors, and incomplete/missing data
on the performance of the methods are also investigated. The results show that the proposed SI approach
is more stable and robust than the other tested methods, and potentially has more merits that are worth
investigating in future research.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Maintaining the healthy conditions of civil infrastructure sys-
tems is important for preventing the losses of properties and lives.
Throughout its life-cycle, a structure is subject to deterioration,
aging or fault of material, which may weaken the structure to an
uncertain level. To avoid catastrophic events caused by such struc-
tural weakness, it is essential to monitor the structural health of
civil infrastructures in construction or use. For this reason, structure

health monitoring (SHM) has been exploited to collect data from
sensors on structures and estimate the actual values of structural
parameters changed due to deterioration or damage of structures
in use [1–6]. As one of the main SHM approaches, so-called system
identification (SI) methods, which generally refers to non-
destructive inverse analysis to estimate structural or modal param-
eters based on the measured responses of a structure subjected to
loads, were developed in past decades. For example, Siringoringo
and Fujino [7] proposed an SI method using ambient vibration
response of a suspension bridge. In general, SI problems are solved
by minimizing an error function consisting of measured and calcu-
lated responses [8–10]. Due to the nature of such optimizationprob-
lems and noises ofmeasured data,many SI algorithms have suffered
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from so-called ‘‘ill-posedness,” which often refers to non-
uniqueness and non-stability of solution in inverse problems [11–
13]. There are various case studies and applications of inverse prob-
lems, and numerous techniques have been developed to improve
accuracy, stability, and efficiency [14–17].

As an effort to overcome such challenges, this paper explores an
idea of applying the Bayesian network (BN) technology to SI prob-
lems. BN is a probabilistic graphical model in which random vari-
ables are represented by nodes and their probabilistic
dependencies are expressed by links [18,19]. These links represent
conditional probabilistic tables (CPT), which contain the condi-
tional probability distribution of ‘‘child” nodes given possible out-
comes of their ‘‘parent” nodes. Once actual outcomes of random
variables in a designed BN become available from measurement
or other sources, the probability distributions of all nodes in the
BN are readily updated to the posterior distributions using efficient
BN inference algorithms. The BN technology has been recently
applied to a wide range of areas including computer science, diag-
nosis algorithms, decision support systems, and social sciences
because of the following merits [20,21]: (1) a BN provides a graph-
ical, powerful, and efficient tool for describing complex systems
consisting of interacting uncertain components; (2) a BN allows
for efficient probabilistic updating and assessment of component/
system performance; and (3) BN’s graphical representations of
uncertainties enable engineers or decision-makers to understand
the interdependencies between random variables intuitively, and
visually identify critical nodes after the BN is updated by new
information called ‘‘evidence.” Recently, making use of these mer-
its, Straub [22] assessed the risk caused by rockfall hazard using
BN. The BN technology has been applied to other natural hazards
as well, e.g., typhoon [23], avalanches [24], and multiple hazards
on infrastructure system [21,25] for decision-making based on
the quantified risk. In addition, Richard et al. [26] developed a
methodology employing reliability method and BN for robust
updating of nonlinear structural models.

There are several BN applications to structures for the purpose
of robust updating [26] and prediction of remaining strength [27].
In these studies, point estimates are made for specific parameters.
By contrast, this paper, as the first attempt of BN-based SI, focuses
on probabilistic identification of the spatial distribution of struc-
tural parameters by developing an effective BN modeling frame-
work. For this purpose, parameters of spatial distribution model
of the structural parameter of interest and structural responses
are represented by nodes in BN, and CPTs are constructed based
on Monte Carlo simulations (MCS) of forward structural analysis
[28]. Then, using BN inference algorithms, posterior distributions
of structural parameters given measured responses are obtained.
This approach allows us to identify spatial distribution of struc-
tural parameters without using an optimization process usually
required for inverse analysis, which is prone to issues caused by
the ill-posedness. If a BN uses nodes representing parameters at
particular locations, as a mesh size in finite element (FE) analysis
[28,29] decreases, the number of the nodes in BN and computa-
tional costs of inference quickly increases. To address this issue,
a bivariate Gaussian function is introduced to describe the spatial
distribution of material parameters such as Young’s modulus. As
a result, the number of nodes representing the spatial distribution
of the material parameter is fixed to six regardless of the mesh size.

The proposed approach is demonstrated and tested by numeri-
cal examples. The results are compared with those by the maxi-
mum likelihood estimation (MLE) and one of the existing SI
methods, so-called FE-updating. For each of the assumed spatial
distribution scenarios, relative errors are introduced to the mea-
sured responses at 1%, 5%, 10%, and 15% levels to simulate noises
in the measurement. Through many scenarios and assumed error
levels, the stability and robustness of the proposed BN-based SI

are tested and compared with the other methods. In addition, the
proposed approach is applied to cases in which multiple sets of
measurements are available. In such cases, the posterior distribu-
tions from one set can be used as prior distributions for the
Bayesian inference using the next set. The performance of this
approach is also investigated by the numerical examples.

After providing theoretical backgrounds on SI, Bayesian param-
eter estimation, and Bayesian Network (Section 2), the paper pro-
poses a new SI method based on Bayesian Network in Section 3.
Then, the proposed method is tested and demonstrated by numer-
ical examples in Section 4. Section 5 summarizes the paper and
lists topics of future studies.

2. Theoretical backgrounds

2.1. System identification for linear elastic continua

Most of the existing SI algorithms are based on the minimiza-
tion of the error between calculated responses (based on assumed
values of structural parameters) and measured responses [8–10].
When the assumed structural model describing the mechanical
system does not represent the actual structure well enough to
overcome noises in the measured responses, the numerical solu-
tion of the optimization problem can be highly unstable. Therefore,
a proper structural modeling is critical for SI. In most cases, FE
models are used to construct the stiffness matrix in the equilib-
rium equation. For a linear elastic continuum, the static equilib-
rium is described as

KðxÞU ¼ P ð1Þ
where K, U, P, and x respectively denote the stiffness matrix, nodal
displacement vector, nodal load vector, and structural parameters
affecting the stiffness matrix such as material properties. With a
change in x, one could mathematically describe deterioration of
the material, an inclusion of disparate materials, or crack decreasing
the elastic properties around damage.

Then, an error function to be minimized is defined by using the
displacement vector in Eq. (1), i.e.

PE ¼ 1
2
kfðx;Uc;UmÞk2 subject to RðxÞ 6 0 ð2Þ

where PE denotes the error function, and k � k represents the Eucli-
dean norm of the error function vector f. In addition, Uc, Um, and R
(x) are vectors of calculated displacements, measured displace-
ments, and functions describing the constraints for the structural
parameters, respectively. The vector f in the Euclidean norm quan-
tifies the errors of the structural model for the given value of x. The
following two types of error functions are often used for SI [30,31]:

fðx;Uc;UmÞ ¼ UcðxÞ � Um ð3Þ

fðx;Uc;UmÞ ¼ fðx;UmÞ ¼ KðxÞUm � P ð4Þ
Eq. (3), termed as a nonlinear least squares problem [12,29], quan-
tifies the error in terms of the displacement. Since the error term
involves the calculated response Uc(x), the optimization requires
performing FE analysis [28], i.e. solving Eq. (1), iteratively during
the optimization. Although this approach does not need full mea-
surement, it might suffer from issues related to convergence, and
is time-consuming in general. On the other hand, using the error
definition in Eq. (4), termed as a linear least squares problem
[11], the optimization does not require solving Eq. (1) iteratively.
In this linear approach, the optimization problem is solved based
on the derivative of the error function defined using L2-norm. How-
ever, a full measurement is needed to avoid rank-deficiency in the
equilibrium equation. As Park [16] showed, SI using Eq. (4), often
termed as equation error estimator (EEE) with L2-norm, may expe-
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