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a b s t r a c t

In recent years several investigations were performed about the behavior of laminated structural glass
elements, namely in terms of their flexural and torsional stiffness, with the lateral-torsional buckling
of beams being one of the most relevant and complex topics. Various analytical formulations were pro-
posed to describe the equivalent stiffness of laminated elements; however, none covers more than three
layers of glass in a comprehensive and unified manner, and those that exist are not consensual. This work
proposes a new formulation, based on sandwich theory, which provides equivalent results to previous
formulations in a limited set of conditions, but that is also able to characterize the behavior of simply
supported laminated glass columns and beams up to five layers, subjected to compressive axial loads,
mid-span loads, uniformly distributed loads, four-point bending, pure bending or torsion. The fundamen-
tals of the formulation presented in this paper allow it to be extended to a larger number of layers and to
different load and support conditions. The proposed formulation is assessed by means of a parametric
study based on the comparison with numerical results retrieved from finite element simulations, in order
to assess the range of validity of each expression. Two analytical approaches for the lateral-torsional
buckling problem are studied in detail, with their fundamentals being explained. Another formulation,
proposed in Australian Standard AS 1288, is also addressed. An experimental assessment of the work
developed is achieved by comparing the results from flexural tests available in the literature with
analytical and numerical predictions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In light of current architectural trends, glass is being increas-
ingly used in several non-structural and structural applications
requiring transparent solutions.

Glass beams or glass-fins can be part of fully glazed solutions,
resisting wind loads acting on a facade or supporting floors, roofs
or stairways. The need for redundancy requires these elements to
be laminated, i.e., to be composed of multiple glass layers bonded
by an interlayer. Because of their high slenderness, glass-fins are
susceptible to lateral-torsional buckling.

In recent years, several researchers have studied the lateral-
torsional buckling phenomenon in laminated glass beams, at both
small (e.g., [1]) and large (e.g., [2]) scales. Experimental, analytical
and numerical studies have been conducted in order to better
understand, for example, the structural behavior of laminated glass
beams [3–7], the influence of the visco-elastic properties of multi-
ple interlayer products [8,9], the influence of different geometrical

imperfections [10] and glass fracture mechanics [11,12]. There is
still much work to be done on this subject, as attested by the vari-
ety of analytical formulations that have been put forward to define
the same engineering problems. Indeed, there is not yet a unified
and commonly adopted formulation to assess this phenomenon.
Additionally, there is also lack of generality on the proposed for-
mulations and their field of application does not cover many prac-
tical situations.

The work presented here aims at (i) extending and consolidat-
ing the analytical formulations proposed to compute the equiva-
lent flexural and torsional stiffness, so that they can be applied
to laminated glass elements with a larger number of layers (more
than three) and other loading conditions, and (ii) assessing various
lateral-torsional buckling formulations, in order to support their
application.

On the one hand, among the available analytical expressions,
this work aims at verifying which ones are valid and more accu-
rate, so that they can be extended to laminated glass elements with
more than three layers. The work also aims at determining the
range of validity of all the expressions analyzed in this work. The
assessment of the validity and accuracy of the available analytical
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expressions is based on the results obtained from numerical finite
element models implemented here for such specific purpose. The
analytical study that aims to extend the formulations (so that they
can be applied to laminated glass elements with more than three
layers) is based on sandwich theory, both regarding flexural and
torsional stiffnesses. The study addresses critical buckling loads
of columns subjected to compressive axial loads, deflections and
stresses of beams subjected to transverse loads or pure bending,
and rotations of beams subjected to torsional moments.

On the other hand, the underlying fundamentals of two existing
formulations regarding the lateral-torsional buckling phenomenon
are investigated. Based on experimental studies available in the lit-
erature [2,13], analytical and numerical simulations are compared
with the experimental results. This also allows to further validate
the previously mentioned analytical expressions, applied in this
case to flexural tests on beams prone to lateral-torsional buckling.

2. Review of previous analytical studies

2.1. Summary of the main studies conducted

Several analytical studies conducted by different authors
resulted in a relatively large number of formulations, which aim

to characterize the stiffness of laminated glass elements. In the
literature there are five main formulations proposed to define
the equivalent flexural stiffness of laminated glass elements
[4,5,14–16] and three main formulations to define their torsional
stiffness [4,5,17].

In the case of columns subjected to compressive axial loads, the
critical buckling load (Pcr) may be determined with the following
equivalent flexural stiffness formulations applied to Euler’s equa-
tion: (i) Luible’s expressions [5], based on the sandwich theory
work of Stamm andWitte [18] (referred here as ‘‘1-A”); (ii) Amadio
and Bedon’s expressions [14], derived from the composite beam
theory proposed by Newmark [19] (‘‘2-A”); and (iii) the
‘‘Wölfel-Bennison approach” [15], first proposed by Wölfel [20]
(‘‘3-A”). These three formulations yield the exact same results for
this loading case. In the case of beams subjected to out-of-plane
mid-span loads, the maximum deflection (wmax) may be deter-
mined with the following equivalent flexural stiffness formulations
applied to the monolithic beam deflection equation: (i) Luible’s
expressions [5], based on the sandwich theory work of Stamm
and Witte [18] (‘‘1-B”); (ii) the expressions proposed Kasper et al.
[4] and adopted in the recent guideline Guidance for European
Structural Design of Glass Components [21] (‘‘2-B”); and (iii) the
‘‘Enhanced effective thickness approach” (‘‘3-B”), derived by

Nomenclature

a, b, h, /, w, kf, nf equivalent flexural stiffness auxiliary parameter
d Dirac’s function
c=c0 transverse/warping shear strain
cij; cij;k shear strain
cint; cint;i shear strain in the interlayer
cxs shear strain in a generically shaped cross-section
kt ; kt;1; kt;2; l; q; c1; c2; nt torsional stiffness auxiliary param-

eter
m; mint glass/interlayer Poisson ratio
x sð Þ sectorial area of a cross-section with respect to its shear

center
/0 initial rotation
/0;max initial rotation of the mid-span cross-section
/max rotation of the mid-span cross-section
wij shape function for the Galerkin’s method
r=rmax maximum normal stress in the exterior layers, along the

span/at mid-span
s; sij; sij;k shear stress
sint ; sint;i shear stress in the interlayer
nr equivalent second moment of area auxiliary parameter
�ui solution of the Galerkin’s method
A equivalent flexural stiffness auxiliary parameter; area
a equivalent flexural stiffness auxiliary parameter
ai distance between the center-lines of adjacent glass lay-

ers
b width
C1; C2; g2; g3 auxiliary parameter for the lateral-torsional

behavior of a beam subjected to in-plane transverse
loads

d distance between the center-lines of the exterior glass
layers

E=Eint glass/interlayer elastic modulus
EI flexural stiffness of a cross-section
EIf equivalent flexural stiffness of a laminated glass ele-

ment
F transverse concentrated load
G=Gint glass/interlayer shear modulus
GJt torsional stiffness of a laminated glass element

Is component of the second moment of area of the glass
layers with respect to the neutral axis

Ir equivalent second moment of area of a laminated glass
element

Igl component of the second moment of area of the glass
layers with respect to their own centroidal axes

Js torsion constant component associated with the shear
contribution of the interlayer

Jgl torsion constant component associated with the thin-
walled contribution of the glass layers

L span
L1 length of the overhangs
La distance between the loads and the supports in a four-

point bending configuration
M bending moment
Mcr critical buckling moment of a glass beam
P axial compressive load
Pcr critical buckling load of a glass column
q uniformly distributed load
qij parameter of the Galerkin’s method
S first moment of area
T torsional moment
ti=tint thickness of the glass layers/interlayer plies
Ts torsional moment component associated with the shear

contribution of the interlayer
ttot total thickness of laminated glass element
u; uA; uB; �u; �uA; �uB warping deformation
V shear force
v0 initial lateral deflection
V1 pure bending component of the shear force
v0;max initial lateral deflection of the mid-span cross-section of

a beam subjected to in-plane transverse loads
vmax lateral deflection of the mid-span cross-section of a

beam subjected to in-plane transverse loads
w1=w2 pure bending/pure shear component of the deflection of

a glass column or of a beam subjected to out-of-plane
transverse loads

zg distance between the applied load and the shear center
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