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a b s t r a c t

This paper is concerned with the development of the Hencky bar-chain model (HBM) for the buckling and
vibration analyses of non-uniform beams resting on partial variable elastic foundation. The HBM allows
analysts to obtain beam buckling and vibration solutions by solving a set of algebraic equations instead of
a differential equation. To get the HBM, we resort to the first order central finite difference model (FDM)
because both discrete models have phenomenological similarities. Based on bending moment, shear force
and deflection equivalence between the two discrete beam models, the expressions for the internal
spring stiffness, the end spring stiffness and the elastic foundation stiffness for the HBM are obtained.
Some example problems are considered to demonstrate the simplicity of the HBM for buckling and vibra-
tion analyses of non-uniform beams on partial variable elastic foundation by taking the number of seg-
ments of the HBM to infinity. The effects of the foundation length and stiffness on the buckling load and
natural frequencies are also discussed. Naturally, the HBM can be used to obtain solutions for articulated
beams or beam-like structures with repetitive cells as well.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Non-uniform columns are commonly used in structural build-
ings, machine and aeronautical space structures to lighten the
weight, save material and even for aesthetic reasons. The buckling
and vibration problems of beams and columns resting on Winkler
elastic foundation have been studied before. But most studies are
restricted to either non-uniform beams on full elastic foundation
or uniform beams on partial elastic foundation. For example, Hsu
[1] investigated the vibration problem of non-uniform beam with
full elastic support using the spline collocation method. Girgin
and Girgin [2] derived the static or dynamic stiffness matrix of
non-uniform beam members resting on a full variable elastic foun-
dation using the Mohr method. The dynamic analysis of non-
uniform beam resting on full Winkler elastic foundation was con-
ducted by Lee and Ke [3] and Abohadima and Taha [4]. But the
effect of the partial elastic foundation was not taken into account
in these papers. Pavlović and Tsikkos [5], Doyle and Pavlovic [6],

Eisenberger et al. [7,8] and Eisenberger and Clastornik [9] studied
the bending, buckling and vibration problems of Euler-Bernoulli
beams on partial elastic foundation and Yokoyama [10] performed
a similar analysis for Timoshenko beams. However, the abovemen-
tioned research papers focussed on uniform beams on partial elas-
tic foundation. This paper treats the more general beam buckling
and vibration problems that allow for partial variable elastic foun-
dation, varying beam cross-section and density as well as general
elastic end restraints.

In the past years, there were many papers written on the buck-
ling and vibration analyses of non-uniform columns. Different
methods for analyses include the finite element method [11–14],
the Rayleigh–Ritz method [15,16], the differential quadrature
method [17], the Bessel function approach [18,19], the power func-
tion approach [19], the integral-equation approach [20], the imper-
fection method [21], and the Haar wavelet approach [22].
However, the modelling of HBM for the non-uniform beams on
variable elastic foundation in the context of buckling and vibration
problems has never been studied before.

The so-called Hencky bar-chain model was originally proposed
by Hencky [23] to replace an Euler continuum beam model so that
one can obtain solutions by solving a set of algebraic equations
instead of a differential equation. It comprises rigid beam segments
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of equal length a (=L/n where L is the length of beam and n the seg-
mental number) and connected to one another by frictionless
hinges and rotational springs with stiffness C = EI/a where EI is
the flexural rigidity of the Euler beam. The total mass of the beam
is distributed as lumped masses at the junctions with qa for inter-
nal joints and qa/2 for the ends where q is the mass per unit length
of the beam.

It was Silverman [24] who first pointed out the equivalence
between the HBM and the FDM for beam buckling problem as long
as the segmental length of HBM is equal to the nodal spacing of
FDM. The same analogy was later mentioned by Leckie and Lind-
berg [25] for beam vibration problems. With the same value of seg-
mental length and nodal spacing, the governing equations of the
two models are mathematically the same for the internal beam
domain. However, in order to keep the HBM exactly analogous to
the FDM, the rotational spring stiffnesses at the beam ends have
to be modelled appropriately. Hencky [23] pointed out that the
rotational spring stiffness has to take on 2C for a clamped end
which was also proven by El Naschie [26] and Ruocco et al. [27].
More recently, Wang et al. [28] showed that the Hencky’s rota-
tional spring stiffness takes on the form of 2C/(1 + 2C/KÞ for an
elastic end with rotational stiffness of K. According to the above
research work, the HBM may be regarded as a physical structural
model for the finite difference equations for beams.

The HBM has been fully developed for uniform beams with gen-
eral end restraints. In order to simulate non-uniform beams on
variable elastic foundation, the original HBM has to be modified.
The rotational spring stiffnesses and lumped masses need to be
reformulated. Moreover, the new boundary conditions for HBM
due to the partial elastic foundation need to be derived. It is there-
fore the aim of this paper to present a more general HBM for appli-
cation to buckling and vibration analyses of non-uniform beams
with end springs and partial variable elastic foundation.

Originally meant to replace the continuum beam, the HBM can
be regarded as the exact model for articulated periodic beam struc-
tures by adopting the appropriate spring siffnesses at the joints.
Such articulated periodic beam structures find applications as
pipelines, trains consisting of many cars, multi-span floating
bridges or space structures comprising many modules [29]. In phy-
sics, the HBM acts as the small-scale periodic chain of mass and
spring in lattice dynamics. Therefore, the HBM may be used to cal-
ibrate the Eringen’s small length scale coefficient as suggested by
Challamel et al. [30–33], Duan et al. [34] and Wang et al. [35,36]
based on the phenomenological similarities of the HBM and the
Eringen’s nonlocal beam model.

In this paper, the next two sections will present detailed deriva-
tions of FDM and HBM for non-uniform beams on partial variable
elastic foundation in the context of buckling and vibration prob-
lems. Next, by resorting to the equivalence of HBM and FDM, the
expressions for the spring stiffnesses of HBM are obtained. Some
example problems will be presented to show the convenience
and accuracy of the HBM. The effect of partial variable elastic foun-
dation on the buckling load and natural frequencies of non-
uniform beams will also be discussed.

2. FDM for non-uniform beam

In order to develop the HBM, we resort to the FDM. Consider an
Euler-Bernoulli beam of length L, flexural rigidity EI(xÞ, mass per
unit length q(xÞ subjected to an axial compressive load P. The beam
is resting on a partial variable elastic foundation of length qL and
stiffness intensity kðxÞ. The left end A and right end B are restrained
by rotational springs having stiffnesses KRA; KRB and lateral springs
having stiffnesses KLA; KLB as shown in Fig. 1a. Fig. 1b shows the
n-segmented FDM for the non-uniform beam with equal nodal
spacing a ¼ L/n and node number from 0 to n. Therefore, the longi-

tudinal coordinate of the j-th node is xj = ja. In order to solve the
fourth-order differential governing equation of the beam, four
boundary conditions for each boundary point have to be intro-
duced. For handling these boundary conditions, the central finite
difference method is applied on the boundary point A, B and D. Par-
ticularly, four fictitious nodes �2, �1, i + 1, i + 2 for the first part
while i � 2, i � 1, n + 1, n + 2 for the second part are created where
i = qn.

The governing equation for the vibration problem of non-
uniform beam under a compressive axial load P and resting on a
partial variable elastic foundation is given by [19]
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where w is the transverse displacement, x the longitudinal coordi-
nate with its origin at end A of the beam andx is the angular vibra-
tion frequency of the beam. The boundary conditions for the
elastically restrained ends are given by [19]
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while the condition at point x = qL is that w is completely continu-
ous. Therefore, the deflection, slope, bending moment and shear
force for the left part and right part at D should be the same.

Next, we discretize the foregoing continuous equations using
the first order central finite difference method. Before the dis-
cretization, the system characteristics may be expressed as

EIðxÞ ¼ EI0f ðxÞ; qðxÞ ¼ q0rðxÞ; kðxÞ ¼ k0jðxÞ ð3aÞ

EIj ¼ EI0f j; qj ¼ q0rj; kj ¼ k0jj ð3bÞ
where EIj, qj and kj are the values of EI(xÞ, q(xÞ and kðxÞ at node j,
respectively. Therefore, it should be noted that EIj = EI(x ¼ xjÞ,
qj = q(x ¼ xjÞ and kj ¼ kðx ¼ xjÞ. Besides, for the special case of
j = 0, f 0; r0 and j0 are equal to 1.

The governing equation (1) is hereby transformed to the follow-
ing difference equations using the first order central finite differ-
ence method:
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