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h  i g  h  l  i  g  h  t  s

• The  axisymmetric  frequency  equation  of  an  isotropic  hollow  two-layer  sphere  is  deduced  by three  dimension  elasticity  theory  and  global  matrix  method.
• The  simulated  results  demonstrate  that  the natural  frequencies  of a hollow  sphere  are  more  strongly  dependent  on Young’s  modulus  than  Poisson’s

ratio.
• The  Young’s  moduli  of  polymer  capsules  with  an  sub-millimeter  inner  radius  are  measured  accurately  with  an  uncertainty  of ∼10%.
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a  b  s  t  r  a  c  t

The  elastic  property  of a capsule  is  one  of the  essential  parameters  both  in  engineering  applications
and  scientific  understanding  of material  nature  in  inertial  confinement  fusion  (ICF)  experiments.  The
axisymmetric  frequency  equation  of an isotropic  hollow  two-layer  sphere  is deduced  by  three  dimension
elasticity  theory  and  global  matrix  method,  and  a  combined  resonant  ultrasound  spectroscopy(RUS),
which  consists  of  a piezoelectric-based  resonant  ultrasound  spectroscopy(PZT-RUS)  and  a  laser-based
resonant  ultrasound  spectroscopy(LRUS),  is developed  for determining  the  elastic  modulus  of capsule.  To
understand  the  behavior  of  natural  frequencies  varying  with  elastic  properties,  the  dependence  of natural
frequencies  on  Young’s  modulus  and  Poisson’s  ratio  are calculated  numerically.  Some representative
polymer  capsules  are  measured  using  PZT-RUS  and  LRUS.  Based  on  the  theoretical  and  experimental
results,  the  Young’s  moduli  of  these  capsules  are  measured  accurately  with  an  uncertainty  of ∼10%.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In inertial confinement fusion (ICF) experiments, a hollow
spherical shell made of polymer (CH), which is generally called a
capsule, is one of the alternative ignition design capsules [1]. To
reach the conditions needed for ignition, many specifications of
the capsule, such as geometrical structures, outer and inner sur-
face roughness, dopant concentration and deuterium-tritium (D-T)
fuel content must meet a rigorous designed standard [2]. In these
parameters, the elastic modulus of material is a key parameter in
both engineering application and science understanding for the
physical nature of material. From the viewpoint of engineering
applications, the elastic modulus directly determines the deforma-
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tion behavior of capsule under high pressure where the DT fuel is
filled in the capsule and low temperature conditions where the DT
gases will be cooled to a solid DT ice layer. Moreover, the elastic
modulus is closely related to the interaction between atoms, and
the knowledge of elastic properties of material will provide a way  to
understand the physical nature of material [3]. Consequently, it is
of particular importance to measure accurately the elastic modulus
of ICF capsule in a nondestructive manner.

Since resonant ultrasound spectroscopy (RUS) is developed by
Migliori and his co-workers at Los Alamos National Laboratory [4],
it has been widely applied to characterize the samples with known
geometries [5–7]. The internal gas density and pressure in metal
capsules was  also determined accurately by this technique [8,9]. As
for an ICF capsule, it is a typical spherical shell with high symmetry,
where an accuracy of a few parts in 104 is expected. Therefore, it is
easy to model with an extra accuracy and the natural frequencies
of capsule can be accurately calculated. Using RUS technique, the
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elastic modulus of capsule may  be determined accurately. How-
ever, little attention has been given to evaluate the elastic
properties of the hollow layered spherical sphere.

In this paper, the characteristic equation of an isotropic hol-
low two-layer sphere was firstly derived under the axisymmetric
condition by three-dimensional (3D) elasticity theory and global
matrix method. Then, the dependence of natural frequencies
on Young’s modulus and Poisson’s ratio are calculated numer-
ically, and two representative capsules were measured with a
combined RUS apparatus, which consists of piezoelectric-based
resonant ultrasound spectroscopy (PZT-RUS), and laser-based res-
onant ultrasound spectroscopy (LRUS). Lastly, the elastic moduli of
capsules were determined from the measured resonant frequencies
as an inverse problem of the frequency equation.

2. Theoretical analysis

According to Helmholtz theorem, the vector field can be
expressed in terms of the gradient of a scalar potential and the
curl of a vector potential. In axisymmetric condition, the displace-
ment vector u in spherical coordinates (r, �, ϕ) can be expressed by
a scalar potential � related to the longitudinal waves and a vector
potential   associated with the transverse waves.

u(r, ϕ, �) = u(r, �) = ∇� + ∇ ×  (1)

∇2� = 1
c12
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�

∂t2
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c22
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with c12 = (� + 2�)⁄�, c22 = �⁄�. c1and c2 are the velocities of
longitudinal and transverse waves, � is the mass density, � and �
are the Lame’s constants. ∇ and ∇2 are the usual del operator and
Laplace operator, respectively.

Using separation variable technique, the solutions to Eqs. (2)
and (3) can be written as
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where k1 and k2 are the wave vector of longitudinal and transverse
waves, respectively. jm(kr)and nm(kr)  are the spherical Bessel func-
tions of the first and second kinds, respectively. m is the order of
Bessel function. Pm(cos �) is the Legendre polynomial. Am, Bm, Cm
and Dm, are arbitrary constants.

Considering the natural modes are independent, according to
the stress-displacement relation, the stress field can be given by

	rr = x11Am + x12Bm + x13Cm + x14Dm (5)

	r� = x21Am + x22Bm + x23Cm + x24Dm (6)
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For a hollow single layer sphere, the free boundary conditions
are taken as

	rr(r) = 	r�(r) = 	r�(r) = 0 (r  = a, b) (7)

Where a and b are the inner and outer radius of the sphere, respec-
tively.

Thus, the characteristic equation can be expressed as

|xij|4×4 = 0 (8)

Where xij can be obtained by instead of a and b in the expressions
just given in Eqs. (5) and (6).

As for a hollow two-layer sphere, according to the free bound-
ary conditions at inner and outer surface and continuing boundary

conditions at interface, the characteristic equation can be rewritten
as

|xij|8×8 = 0 (9)

Where xij can be obtained by instead of radius values at inner and
outer surface and interface in the expressions just given in Eqs.
(4)–(6).

Based on the frequency Eqs. (8) and (9), the natural frequen-
cies of a hollow one-layer or two-layer capsule can be calculated
exactly. Utilizing the measured natural frequencies, the elastic
modulus of capsule can be determined as an inverse problem of
Eqs. (8) and (9).

As for an elastic solid sphere with a free boundary, the frequency
equation reduces to the expression [10]:

x2[2(2m + 1)(m − 1) − x2]jm(Kx)jm(x) + 4Kx(m + 2(m − 1)jm+1(Kx)jm+1(x) + 4Kx[x2−
(m + 1)(m − 1)(m + 2)]jm+1(Kx)jm+1(x) + 2x[x2 − 2m(m − 1)(m + 2)]jm+1(Kx)jm+1(x) = 0

(10)

where x = k2R, K = k1⁄k2,k2 = 2
fR⁄C2,k1 = 2
fR⁄C1. R and f are the
radius and natural frequency, respectively.
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