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a  b  s  t  r  a  c  t

The  aim  of  this  paper is  to assess  the importance  of the  magnetic  damping  in  the  dynamic  response  of
the  main  plasma  facing  components  of fusion  machines,  under  the strong  Lorentz  forces  due  to Vertical
Displacement  Events.  The  additional  eddy  currents  due  to  the  vibration  of the conducting  structures  give
rise  to volume  loads  acting  as  damping  forces,  a kind of viscous  damping,  being  these  additional  loads
proportional  to the  vibration  speed.  This  effect  could  play  an  important  role  when  assessing,  for  instance,
the  inertial  loads  associated  to  VV movements  in case  of  VDEs.  In  this  paper,  we present  the  results  of  a
novel  numerical  formulation,  in which  the  field  equations  are  solved  by adopting  a very  effective  fully
3D  integral  formulation,  not  limited  to the  analysis  of  thin  shell  structures,  as  already  successfully  done
in several  approaches  previously  published.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

The dynamical behavior of conducting structures in the pres-
ence of a strong magnetic damping was the subject of a high
scientific interest in the past, leading to several computational
models with experimental validation, mainly related to thin shell
structures [1,2]. The advent of faster and more efficient computa-
tional resources together with larger storage data capabilities has
brought a new interest on this activity [3,4]. The numerical mod-
els developed up to now are based on differential formulations,
which have some drawbacks. As a matter of fact, the treatment of
the v × B term deserves a deal of attention if the governing equa-
tions are written in the Eulerian coordinate system. Otherwise, if
a Lagrangian description is adopted [7], there is the need of re-
meshing the air domain, in principle at every time step, for correctly
taking into account the deformation of the structure during the
transient. In this context, we have studied an alternative approach
based on an integral formulation of the electromagnetic problem
coupled with the 3D dynamical model of the conducting structures
[5].

In this paper, after the validation of this novel formulation
against the experimental results of the TEAM-16 benchmark [1]
and the problem of a cylinder placed under a transient magnetic
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field [2], we focus the attention on the coupled electromechanical
analysis of the ITER vacuum vessel, in case of a slow downward
VDE. This VDE is the most demanding load case in terms of applied
net vertical force to the vacuum vessel structure. In fact, fusion
reactor components such as the VV, but also for instance the port
plugs, experience significant mechanical loads due to the interac-
tion of high static magnetic fields produced by the superconducting
coils system and the induced currents and halo currents due to fast
electromagnetic events such as the VDEs. Usually these are design-
driving loads, which can compromise the integrity of the structures.
To this end, the electromagnetic damping effect has been analyzed
showing its impact on the mechanical transient of the VV structure.
In this paper, the analysis previously done [5] has been improved,
by considering a more accurate model of the VV, now including
the inner and outer shells, the toroidal and poloidal ribs, the ports
and port plugs, the blanket modules, the divertor and divertor rails.
Moreover, a specific numerical procedure has been implemented
to take into account the presence of the halo currents, neglected
in [5].

2. Numerical formulation of the problem

In the presence of time varying electromagnetic sources, eddy
currents are induced in a 3D conducting domain Vc giving rise to
Lorentz forces when interacting with the magnetic field. In the
limit of small displacements, after discretization, the subsequent
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deformation of the specimen can be obtained as the solution of the
following dynamical system:

M
d2u

dt2
+ Ku = f (t) (1)

In (1), by using nodal shape functions Ni, the displacement in Vc,
is expressed as u(r, t) =

∑
i=1:Ndof

ui(t)Ni(r); the number of degrees

of freedom Ndof is equal to the product of the number of nodes and
the three components of u(r, t). Then, u is the column vector made
by the Ndof coefficients ui. M and K are the sparse mass and stiffness
matrix, respectively, while f(t) is the vector of the nodal Lorentz
forces defined as:

fi(t) =
∫

Vc

Ni · J(r, t) × N(r, t)d�, i = 1 : Ndof (2)

being J the current density and B the magnetic induction. The
electromagnetic system, in the magneto-quasi-stationary limit,
with non-magnetic materials, is described by the following set of
dynamical equations, arising after discretization of the electric field
integral equation, in the magneto-quasi-stationary limit [6]:

d(LI)
dt

+ RI + dEs

dt
= 0 (3)

where

Lij = �0

4�

∫
Vc

∫
Vc

Wi(r) · Wj(r′)
|r − r′| d�d� ′ (4)

Rij =
∫

Vc

Wi(r) · �−1Wj(r)d� (5)

dEs
i

dt
= −

∑
k=1,Ndof

Fs
ik

duk

dt
−  V0,i (6)

V0,i = −
∫

Vc

Wi(r) · ∂As(r, t)
∂t

d� (7)

Fik(t) =
∫

Vc

Wi(r) · Nk(r) × Bs(r, t)d� (8)

Here � is the electric conductivity and As is the vector poten-
tial due to the sources outside the conducting domain Vc and
Wk = ∇ × Tk, being Tk the kth edge element shape function associ-
ated to the elements sharing the kth edge. The uniqueness of Wk is
assured by the tree-cotree gauge [6]. Notice that, with B(r, t) = Bs(r,
t) + BJ(r, t), being Bs(r, t) the field due to the sources, BJ(r, t) the field

due to the eddy currents, and J given by J(r, t) =
∑

k=1,N

Ik(t)Wk(r), f

as defined by (2), is expressed as f k(t) = −
∑
i=1,N

Gik(I, t)Ii, where

Gik(I, t) = Fik +
∫

Vc

Wi(r) · Nk(r) × Bj(I, r)d� (9)

The components of the magnetic induction Bj inside each
element e, computed using the Biot–Savart formula, are linear func-
tions of I, given by the following expression:

BJ(I, re) · îm =
∑
i=1,N

Bm
ei Ii (10)

with m = x, y, z where Bm
ei

= �0
4� îm ·

∫
V

Wi(rQ )×(re−rQ )∣∣re−rQ

∣∣3 drQ .

Finally, the coupled electro-magneto-mechanical dynamical
system (1)–(3), can be written in a compact form as:

M
d2u

dt2
+ Ku + GT (I, t)I = 0 (11)

L
dI

dt
+ RI − F(t)

du

dt
= V0(t) (12)

The inductance matrix has been assumed to be unchanged with
respect to time under the hypothesis of sufficiently small displace-
ments.

This system is usually computationally very intensive, and for
this reason, we  use a suitable modal expansion [7,8]. In this approx-
imation, we compute the Nmode dominant modes Pks by solving the
related generalized eigenvalue problem. By using the classic linear
transformation u =

[
P1P2...PNmod e

]
x = Px and the orthogonality of

M and K with P, we have:

m
d2x

dt2
+ kx + PT FT (t)I = 0 (13)

L
dI

dt
+ RI − F(t)P

dx

dt
= V0(t) (14)

where m and k are diagonal matrices (i.e. mii = PiTMPi, kii = PiTKPi).
The system (13), (14) is integrated in time by applying the New-
mark’s  ̌ method for solving (13) and the implicit method for (14)
[8]. At each time step, the solution of the two subsystems is iter-
atively computed until the discrepancy of two iterates is below a
given threshold. In all cases here examined, only few steps were
required for a relative threshold of 10−6.

If necessary, the system can be further simplified by introducing
a similar expansion for solving (14).

3. Implementation and validation of the numerical model

Here we  illustrate the main features of the implementation of
the numerical model described in Section 2. The model has been
validated against the experimental results of the TEAM-16 bench-
mark problem [1] and the published results of the analysis of a
cylinder placed under a transient magnetic field [2]. All analy-
ses have been self-consistently performed by implementing the
solution of the coupled system in MATLAB. Matrices L and R are
imported from the output of the CARIDDI program. The stiffness
and mass matrices have been computed by the commercial code
ANSYS using the SOLID185 element, by using the same mesh of
CARIDDI. They are also imported in MATLAB from the output of
ANSYS. The post-processing has been carried out by passing in input
to ANSYS the solution of the coupled electro-magneto-mechanical
system in terms of the electromagnetic nodal forces at a suitable
number of time instants (typically around 300). These forces have
been used to execute again the corresponding dynamical analy-
sis with ANSYS, by using the SOLID185 element for crosschecking
purposes and exploiting its post-processing capabilities.

3.1. TEAM problem 16

In this problem, a copper rectangular plate (Lx = 115 mm,
Ly = 40 mm,  Lz = 0.3 mm,  electric conductivity � = 5.81 × 107 S/m,
mass density � = 8912 kg/m3, Young’s modulus E = 1.1 × 1011 Pa and
Poisson’s ratio � = 0.34), rigidly clamped at one hand (clamped
length Lc = 10 mm)  is placed under a steady uniform magnet induc-
tion By and a pulsed magnetic field generated by a 27 turns
circular coil. Its outer and inner diameters are 22 mm and 20 mm,
respectively. The coil height is 24.2 mm.  The distance between
the plate and the coil is 9.5 mm and the coordinates of the coil
center are (105, 0 mm).  The time variation of the coil current,
is i(t) = 800[exp(−500t) − exp(−600t)] A. The finite element mesh
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