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h  i  g  h  l  i g  h  t  s

• A  new  induction-based  magnetohydrodynamic  code  was  developed  using  a  finite  difference  method.
• The  code  was  benchmarked  against  purely  hydrodynamic  and MHD  flows  for low  and  finite  magnetic  Reynolds  number.
• Possible  applications  of  the  new  code include  liquid-metal  MHD  flows  in  the  breeder  blanket  during  unsteady  events  in the  plasma.
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a  b  s  t  r  a  c  t

Most  numerical  analysis  performed  in  the  past  for MHD  flows  in  liquid-metal  blankets  were  based  on
the  assumption  of low  magnetic  Reynolds  number  and  involved  numerical  codes  that  utilized  electric
potential  as  the  main  electromagnetic  variable.  One  limitation  of  this  approach  is that  such  codes  can-
not  be applied  to truly  unsteady  processes,  for example,  MHD  flows  of liquid-metal  breeder/coolant
during  unsteady  events  in  plasma,  such  as  major  plasma  disruptions,  edge-localized  modes  and  ver-
tical displacements,  when  changes  in plasmas  occur  at millisecond  timescales.  Our  newly  developed
code  MOONS  (Magnetohydrodynamic  Object-Oriented  Numerical  Solver)  uses  the  magnetic  field as  the
main  electromagnetic  variable  to  relax  the  limitations  of  the  low  magnetic  Reynolds  number  approxima-
tion  for  more  realistic  fusion  reactor  environments.  The  new  code,  written  in  Fortran,  implements  a 3D
finite-difference  method  and  is  capable  of  simulating  multi-material  domains.  The  constrained  transport
method was  implemented  to evolve  the  magnetic  field  in time  and  assure  that  the  magnetic  field  remains
solenoidal  within  machine  accuracy  at every  time  step.  Various  verification  tests  have  been  performed
including  purely  hydrodynamic  flows  and  MHD  flows  at low  and finite  magnetic  Reynolds  numbers.  Test
results have  demonstrated  very  good  accuracy  against  known  analytic  solutions  and  other  numerical
data.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Magnetohydrodynamic (MHD) codes are important tools for
design and analysis of liquid-metal blankets [1]. Induced magnetic
fields are often dismissed as negligible compared to external mag-
netic fields in many codes used to simulate liquid-metal MHD  flows
in fusion reactor environments, but this is not always the case.
Major plasma disruptions, edge-localized modes and vertical dis-
placements may  result in strong electromagnetic interactions in
the liquid-metal, which cannot be described with the induction-
less approximation. In addition, magnetic Reynolds number (Rem)
based on large duct lengths (e.g. long poloidal “banana” segments)
may  yield moderate values comparable with unity.
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The magnetic induction (B) formulation, based on utilization of
the magnetic field as the main electromagnetic variable, is more
general and has several advantages over the electric potential (ϕ)
based formulation. Induced magnetic fields and its transport are
captured in the B-formulation but ignored in the ϕ-formulation.
Another advantage of the B-formulation is that conservation of
charge, a challenging and important constraint in MHD  com-
putations [2], is automatically enforced if the magnetic field is
numerically solenoidal. The goal of this paper is to introduce a new
induction-based code for finite Rem MHD  flows and present test
results and its capabilities.

2. Mathematical formulation

Combining Ohm’s law, Faraday’s law, and the Ampère–Maxwell
equation yields the induction equation. Momentum, continuity
and induction equations are non-dimensionalized by characteristic
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velocity, U, length, L, time, L/U, pressure, �U2, and magnetic field,
B. Assuming incompressible and isothermal conditions, the dimen-
sionless momentum, induction, mass continuity and magnetic field
continuity equations are:

∂u
∂t

+ ∇ • (uu) = −∇p + 1
Re

∇2u + Ha2

ReRem
(∇ × Bind) × (B0 + Bind),

(1)

∂(B0 + Bind)
∂t

− ∇ × {u × (B0 + Bind)} +

1
Rem

∇ ×
{

1
�̄
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)}
= 0, (2)

∇ • u = 0, (3)

∇ • B = 0. (4)

Here, u, p, B are dimensionless velocity, pressure and magnetic
field (separated into induced, Bind, and applied, B0) respectively.
In Eqs. (1) and (2), Reynolds number (Re) Hartmann (Ha) mag-
netic Reynolds number (Rem) and dimensionless ratios of electrical
conductivity and magnetic permeability are defined as
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Here, �, �, �, �m are kinematic viscosity, density, electrical conduc-
tivity and magnetic permeability of the fluid while �w and �m,w

pertain to the wall respectively. Reynolds number is the ratio of
inertial to viscous forces. Hartmann number squared is the ratio
of electromagnetic to viscous forces. Magnetic Reynolds number is
the ratio of magnetic field convection to diffusion. In this study �̄m

is assumed to be unity.
Similar to Eq. (3), Eq. (4) is a physical constraint on the mag-

netic field to remain solenoidal. Mathematically, Eq. (4) does not
need to be solved along with Eq. (2) but this may  lead to unphysical
forces in the momentum equation [3,4]. The constrained transport
(CT) method is used to enforce Eq. (4) and will be discussed in
Section 3.

All solved variables begin with zero magnitude. Typical bound-
ary conditions (BC) for velocity and pressure are Dirichlet,
Neumann and periodic. The most physically reliable BCs for the
magnetic field is B = 0 far from the flow domain. In practice, this
can require many grid points and be computationally expensive.
Several methods can approximate or reconstruct this BC. First, the
pseudo-vacuum BC, expressed as

∂Bnormal

∂n
= 0, Btangential = 0, (5)

can be applied at the interface between the flow-containing wall
and the non-conducting exterior (vacuum). Second, a decay func-
tion of the form B ∝ r−n can be used where r and n are the distance
from the flow domain and a decay parameter. Third, the Bound-
ary Element Method solves for the magnetic field using a magnetic
scalar potential, obtained from a Laplace equation by applying the
magnetic field curl-free property outside the flow domain and the
divergence-free constraint [5].

In this study we use the pseudo-vacuum BCs as this approach
was successfully utilized in commercial solvers ANSYS and FLUENT

Fig. 1. Staggered variables on computational cell.

and can produce physically realistic results for a wide range of MHD
problems [6–8].

3. Numerical procedure

Our code, MOONS, solves the governing Eqs. (1)–(4) in rectilin-
ear coordinates. Second order accurate finite-difference schemes
are used to approximate all spatial derivatives on a staggered grid
(Fig. 1). Centered difference stencils were used to compute deriva-
tives, including the advection term in Eq. (1). Non-uniform grids are
generated using Robert’s stretching functions defined in [9], which
ensure that a sufficient number of cells are present in boundary
layers. Momentum and induction equations are solved separately
at each time level, where first order accurate explicit time march-
ing is used for all terms except pressure. Pressure is treated purely
implicitly. A projection method is used to enforce a divergence-
free velocity field, where Gauss-Seidel method is used to iteratively
solve the pressure Poisson equation [10]. Diagonal Preconditioned
Conjugate Gradient method was used in place of Gauss-Seidel for
Shercliff and Hunt flows.

The CT method, described in Ref. [3], is implemented and
enforces Eq. (4) within machine accuracy at every time step as long
BCs are compatible with Eq. (4) and initial conditions satisfy Eq. (4).
The main idea is that B and ∇ × B are staggered on cell faces and
edges respectively (Fig. 1), resulting in perfect numerical cancella-
tion when computing Eq. (4). Although not shown in Fig. 1, u × B
is also located on cell edges. Interpolations of variables between
different cell locations are performed with second order accuracy.

4. Verification test cases

Several verification tests were conducted including: (1) purely
hydrodynamic flows, (2) MHD  flows at low Rem and (3) MHD  flows
at finite Rem. The goal of the purely hydrodynamic verification
tests was to address grid refinement, spatial order of accuracy and
benchmark the hydrodynamic component of MOONS against avail-
able numerical solutions.

4.1. Hydrodynamic lid-driven cavity flow

A lid-driven cavity flow is a classic benchmark for fluid dynamic
codes due to the complex flow features including transition to
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