
www.elsevier.com/locate/ijcip

Available online at www.sciencedirect.com

A methodology for determining the image base
of ARM-based industrial control system firmware

Ruijin Zhua,b, Baofeng Zhanga, Junjie Maoa, Quanxin Zhangb,c, Yu-an Tanb,c,n

aChina Information Technology Security Evaluation Center, Beijing 100085, China
bSchool of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
cBeijing Engineering Research Center for Massive Language Information Processing and Cloud Computing Applications,
Beijing 100081, China

a r t i c l e i n f o

Article history:

Received 1 January 2016

Received in revised form

30 July 2016

Accepted 28 November 2016

Available online 3 January 2017

Keywords:

Industrial Control Systems

ARM Architecture

Firmware

Image Base

Reverse Engineering

a b s t r a c t

A common way to evaluate the security of an industrial control system is to reverse engineer

its firmware; this is typically performed when the source code of the device is not available

and the firmware is not trusted. However, many industrial control systems are based on the

ARM architecture for which the firmware format is always unknown. Therefore, it is difficult

to obtain the image base of firmware directly, which significantly complicates reverse

engineering efforts. This paper describes a methodology for automatically determining the

image base of firmware of ARM-based industrial control systems. Two algorithms, FIND-

String and FIND-LDR, are presented that obtain the offsets of strings in firmware and the

string addresses loaded by LDR instructions, respectively. Additionally, the DBMSSL algo-

rithm is presented that uses the outputs of the FIND-String and FIND-LDR algorithms to

determine the image base of firmware. Experiments are performed with 10 samples of

industrial control system firmware collected from the Internet. The experimental results

demonstrate that the proposed methodology is effective at determining the image bases of

the majority of the firmware samples.

& 2017 Elsevier B.V. All rights reserved.

1. Introduction

Industrial control systems are widely used in critical infrastruc-

ture assets such as water treatment plants, oil and gas

pipelines, refineries and electric power grids. Traditionally,

industrial control systems have been designed for operation

in closed, trusted networks with little emphasis on security and

limited protection mechanisms [5]. However, increased inter-

connectivity, especially connections to corporate networks and

the Internet expose industrial control systems and the critical

infrastructures they monitor and control to serious threats.

One example is Stuxnet, which, in 2010, targeted uranium

hexafluoride centrifuges at Natanz in Iran [10]. In 2011,

SCADA systems at water utilities in Illinois were hacked,

which disrupted the water supply [8]. In 2014, the U.S. ICS-

CERT [9] released a security bulletin about the Havex mal-

ware. Like Stuxnet, Havex was designed to attack industrial

control systems; it supposedly has the ability to disable

hydropower dams, overload nuclear power plants and even

shut down power grids.
Statistics indicate that 92.6% of the vulnerabilities discovered

in current industrial control systems are in software/firmware

http://dx.doi.org/10.1016/j.ijcip.2016.12.002
1874-5482/& 2017 Elsevier B.V. All rights reserved.

nCorresponding author at: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
E-mail address: tan2008@bit.edu.cn (Y.-a. Tan).

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 1 6 (2 0 1 7) 2 6 – 3 5

http://dx.doi.org/10.1016/j.ijcip.2016.12.002
http://dx.doi.org/10.1016/j.ijcip.2016.12.002
http://dx.doi.org/10.1016/j.ijcip.2016.12.002
http://dx.doi.org/10.1016/j.ijcip.2016.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcip.2016.12.002&domain=pdf
mailto:tan2008@bit.edu.cn
http://dx.doi.org/10.1016/j.ijcip.2016.12.002

whereas only 7.4% are associated with hardware [11]. Any
firmware used in industrial control systems should be assumed
to be insecure because it may contain vulnerabilities and
security flaws. Therefore, it is imperative to conduct security
analyses and vulnerability discovery efforts for industrial control
systems [12,13,18,20].

The security of firmware can be analyzed by reverse engi-
neering [3,13,14,19,21]. When disassembling firmware, a tool
such as IDA Pro needs to know the processor type and image
base. In general, the processor type can be discerned by
consulting the product manual or tearing down the device. If
the firmware format is known, then the image base can be
discerned. Unfortunately, most ARM firmware, which is widely
used in modern industrial control systems, are binary files with
unknown formats, so it is difficult to obtain the image bases
directly. Armed with the correct image base, a disassembler can
construct accurate cross references in instances where the
address references use absolute addresses instead of offsets
in a binary file [16]. The cross references, which include jump
location references, function references, string references, etc.,
can be very helpful when attempting to navigate messy
disassembled code. Hence, identifying the image base is impor-
tant for reverse engineering efforts.

Several solutions have been proposed to obtain the image
base of firmware with an unknown format. Skochinsky [17]
has proposed a general technique for determining the image
base of embedded system firmware; the technique leverages
several hints such as self-relocating code and initialization
code. Basnight et al. [2,4] have presented two methods for
inferring an image base. The first method uses immediate
values in firmware instruction and update files to infer a
reasonable image base. The second method uses a hardware
debugger to connect to and halt a programmable logic
controller and obtain a memory dump. The image base is
then found by manually analyzing common ARM instruction
patterns in the memory dump.

Da Costa et al. [7] have noted that, when the case values in
a switch statement of a C program are sequential and dense,
the memory addresses of the cases are usually stored in a
jump table; this fact can be used to infer the memory
addresses of pieces of nearby code and eventually obtain
the image base. Santamarta [15] describes another way to use
a jump table. Since a jump table contains the absolute
addresses of cases, the distances between the cases can be
calculated. If there is a certain distance that is different from
the others, the corresponding relation between the absolute
address and offset of the case can be obtained, based on
which, the base address can be determined.

These solutions for determining an image base need
human interaction, namely the determination relies on the
intuition and experience of the reverse engineer. Analysis of
the literature reveals that only the methods described in
[22,23] can automatically calculate the image base of firm-
ware with an unknown format. However, the efficiency of
these methods needs to be improved.

At present, most industrial control system firmware
resides in embedded systems. According to Costin et al. [6],
approximately 63% of embedded devices are based on the
ARM architecture. Hence, this research focuses on industrial
systems based on the ARM architecture and proposes a

methodology for determining their firmware image bases.
Firmware usually contains strings and the strings that are
referenced in adjacent code are stored centrally. Therefore, to
begin with, the FIND-String algorithm is presented for obtain-
ing the string offsets used to calculate the numbers of bytes
occupied by the strings. Since a compiler typically loads a
string address into a register using the LDR instruction, the
characteristics of the LDR encoding format are leveraged to
specify the FIND-LDR algorithm that obtains the addresses of
the strings loaded by LDR instructions. Next, the number of
bytes occupied by the strings are calculated. Finally, using the
numbers of bytes occupied by strings provided by the FIND-
String and FIND-LDR algorithms, it is possible to discern the
relationships between string offsets and memory addresses,
which yield the image base of firmware.

This research has two main contributions. First, it work
leverages the encoding of LDR instructions to effectively
identify LDR instructions and calculate the address loaded
by each LDR instruction. Second, a methodology is presented
for determining the image base of industrial control system
firmware with an unknown format. The methodology uses
string offsets and string addresses loaded by LDR instructions
to determine the image base. Experiments demonstrate that
the methodology is very effective at determining the image
base of firmware that uses LDR instructions to load string
addresses.

2. Strings and LDR instructions in firmware

This section discusses the storage features and loading
process of strings in firmware. The FIND-String algorithm is
presented for recognizing strings and outputting their offsets.
Additionally, the FIND-LDR algorithm is presented for identi-
fying LDR instructions in firmware and outputting the
addresses loaded by LDR instructions.

2.1. Identifying strings in firmware

A binary file typically contains a number of strings, including
prompt messages, error messages and version information.
Each string contains some printable characters and escape
characters. Printable characters include letters, numbers and
punctuation; the ASCII range of these characters is 0x20 to
0x7E. Escape characters include line breaks (0x0a), tabs
(0x09) and others; the ASCII range of these characters is
0x09 to 0x0D. Thus, the ASCII range of strings is [0x09, 0x0D]
[[0x20, 0x7E]. Since the C language is most commonly used
for developing industrial control system software, only C-
style strings are discussed in this paper. In the C language, a
string is usually stored in a character array whose last
element is the string terminator “⧹0’’ with ASCII code

0x00.

Figs. 1(a) and 1(b) show strings stored in the compact
mode and aligned mode, respectively. In both storage modes,
the strings are stored by the compiler. For performance
reasons, some compilers store strings in the aligned mode.
If the available storage position for a string is not a multiple
of four bytes, the compiler adds some padding characters
(0x00 bytes) to create a storage position that is an exact

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 1 6 (2 0 1 7) 2 6 – 3 5 27

Download English Version:

https://daneshyari.com/en/article/4921718

Download Persian Version:

https://daneshyari.com/article/4921718

Daneshyari.com

https://daneshyari.com/en/article/4921718
https://daneshyari.com/article/4921718
https://daneshyari.com

